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Summary

The desire to produce artificial vision systems which behave in an intelligent, human-
like way or which can autonomously and automatically perform tasks currently only
performed by humans has been a goal of Artificial Intelligence research for many
decades.

Until recently much of the research concentrated on extracting visual representations
of objects from single, static scenes. The last decade has seen an increase in interest
concerning mobile robotics for navigation, planning and autonomous control as well
as for the interpretation of events in real, dynamic scenes.

Presented in this thesis is research on artificial vision systems from two different,
but both necessary, standpoints. One concerns low-level vision-based behaviour of
object tracking based upon a naturalistic theory of perception and behaviour within
living systems. The other takes a more application and engineering based approach
and its goal is to address high-level scene interpretation and control of processing
resources.

Numerous experiments are presented to demonstrate the various issues. The two
main experiments, corresponding to the two research streams, are a system which
is able to fixate complex multi-coloured objects and a fully integrated vision system
for predicting and following, with a mobile sensor, events in a dynamic scene.

Key words: Perception, Behaviour, Control Theory, Fovea, Active Vision, Visual
Integration, Calibration, Scene Evolution, Grammatical Modelling.
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Introduction






Chapter 1

Setting the scene

1.1 Motivation

What makes us tick 7 This question has engrossed mankind for thousands of years.
The mechanics of solely (supposedly) human concepts such as intelligence, autonomy,
thought, consciousness, perception and behaviour have been endlessly discussed and
dissected. Behind such curiosity has been not only the desire more deeply to under-
stand ourselves, but also to create artificial systems which replicate Man. However,
not until this century has technology reached such a level that the attempt to build

systems with Artificial Intelligence (AI) can be taken seriously.

In this thesis we report our research that takes advantage of the enormous advances
in computer technology over recent decades to further the investigation into the
nature of living systems and one possible architecture for their artificial counterparts.
There are myriad starting points for such research of which we have chosen visual
perception and behaviour. Vision is the dominant sense in many animals, and
certainly in humans. To our mind vision is the most interesting sense as there is a
wealth of applications in which artificial vision systems could take over, enhance or
even improve upon the tasks currently performed by humans. In terms of artificial
systems, incorporating vision is sensible and desirable not only due to the multitude
of tasks which it would allow, but also that a vision-less system would barely resemble
major human-like abilities, given that it is the major way by which we learn about,

navigate around and interact with the world.

Interaction is a key concept when dealing with any intelligent system, whether it be
natural or artificial. No living system has a passive one-way relationship with the

world, it behaves, whether that be holding a conversation, swimming through the
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mud or setting down roots. Senses without action are pointless, which bring us to
the other side of the perception coin which is the concern of this research, behaviour,

specifically behaviour associated with visual perception and visual systems.

1.2 Objectives

Two quite distinct areas of research are presented in this thesis. Although both are
concerned with vision and action, the philosophical foundations, guiding principles,
objectives and methodologies are quite different. One is Perceptual Control Theory
(PCT) [87, 88, 91], a radical theory of the nature of perception and behaviour in
living systems. The other is a more conventional computer vision approach, hereafter
referred to as the Vision As Process (VAP) [27] project.

The aim of the PCT research presented in this thesis is two-fold. In general terms
the goal is to present the concept of control of input and how it applies to a real
system and, more specifically, to develop a visual system which is able to control its

fixation (viewpoint) relative to complex objects.

Distinguishing an object in a real scene is no trivial matter. Different parts of a
scene may have similar, and therefore distracting, attributes as that of the target.
For example, an object may have the same colours as its background, the question
then becomes where does the object finish and the background start, or different
objects may have the same colour. In figure 1.1 the coloured faces have many
colours in common both with each other and the background. The problem can be
alleviated, to some extent, if different perceptual dimensions are considered. If it is
possible to detect shape or motion characteristics, say, specific to the target it will be
more easily distinguished. The majority of previous work on fixation and tracking in
dynamic views has mainly concentrated on single perceptual dimensions where the
target is easily distinguished [50, 81, 107] in complex views or simple views where

the target has no distractions.

One way to move this research forward could be to add extra perceptual dimensions
to the system. However, we favour a different approach involving higher-level char-
acteristics of a single dimension. Neurophysiological evidence [53, 29, 113] suggests
that the brain is structured in just such a way, with higher areas representing in-
creasingly abstract aspects of the environment. Part II describes some preliminary

work drawing on the principles and methodology of PCT.

The objective of the VAP project is to build artificial vision systems which are able to

interpret what is happening in a dynamic, real-world scene and act accordingly. The
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Figure 1.1: Multi-coloured objects

way this is envisaged to be accomplished is to integrate diverse perceptual modules
within a mobile robotic framework working on the principles of attentional control
of processing and active parameters with the purpose of achieving computational

efficacy.

The majority of Computer Vision research has concentrated on single visual modules
or techniques in isolation. The VAP project represents one of the first attempts to
bring together and integrate the diverse elements necessary for a complete vision

system.

The recent research effort in computer vision, under the acronym VAP (vision as
process) [27], clearly demonstrated the benefit of enhancing the commonly advocated
active vision paradigm [1, 2, 5, 41] by the concept of continuous processing which
facilitates the exploitation of temporal context to make the scene interpretation
problem manageable. Accordingly, the vision system is not only able to control the
camera to focus on regions of interest or to adopt a new view point to simplify a scene
interpretation task, but most importantly, it is processing the input visual data on a
continuous basis. The latter has the advantage that the degree of knowledge about
the imaged scene (identity, location and pose of objects in the scene) is continuously
maintained and this in turn simplifies the complexity of future visual tasks. This idea
mimics the ability of the human vision system to build a model of the surrounding
environment and use this model to generate visual expectations (even with closed

eyes). In terms of machine perception, the capability to exploit temporal context
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translates into the requirement to build a symbolic scene model which is utilised in

solving instantaneous visual tasks and is continuously updated.

We have developed a vision system which adheres to the VAP philosophy [57]. The
scene is regularly sampled by visual sensing and the outcome of processing directed
towards a particular visual task is entered into a scene model database. The database
contains symbolic information about the types of objects detected, their position in
the 3D world coordinate system defined for the environment in which the sensor
operates, and their pose. The system has been shown to exploit multiple cues to
generate object hypotheses and to verify the content of the scene model. It also has
the capability to interpret dynamic scenes. In particular, it has been demonstrated
how the combined use of temporal context and a grammatical scene evolution model

enhance the processing efficiency of the vision system [70].

In the above studies the camera of the vision system acted as a static observer. We
have recently extended the system capability by placing the camera on a robot arm
with a view to performing scene model acquisition and maintenance experiments
with an active observer. As the ego-motion of the active observer is known to
sufficient accuracy, it should be possible to verify the presence of objects in the scene
model database from any view point. However, a mobile camera raises the issue of
accuracy and stability of calibration. If calibration is inaccurate, the prediction of
the appearance of objects in the scene model will be rendered useless for efficient

comparison with the observed data.

In this thesis we investigate the influence of calibration errors on scene interpretation
and scene model maintenance using an active observer. We show that a single view
calibration does not yield calibration parameters which are sufficiently accurate.
This leads to inaccurate estimates of object positions. Moreover, the positional
estimates cannot be improved by viewing an object from several viewpoints, as the
location estimates are biased towards the initial calibration viewpoint. We show
that the problem can be effectively overcome by means of a multi-view calibration
process. This avoids over-fitting the camera/grabber chain calibration parameters

and facilitates reliable and computationally efficient scene model maintenance.

We then turn to the main goals of this research, to control the processing and view
point of the camera in relation to a dynamic real-life scene. The problems being
that the exhaustive search of a model database is impractical in terms of efficiency
and random changes in viewpoint will not adequately track the action. The solution
involves incorporating a representation of the evolution of scene events in terms of

grammoatical models. We investigate the effects of using such models, to hypothesise
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Figure 1.2: Breakfast table scenario

objects and viewpoints, on the computational processing resources of the system.

The work described in part III successfully integrates modules for the detection
of regions of interest, object recognition, camera calibration, mobile robot/camera
control and scene evolution models into an active vision system capable of controlling
the nature of processing and the choice of viewpoint with respect to dynamic, real
world scenes. The specific type of scenario used is that of a breakfast table scene
(see figure 1.2) where objects are placed in real-time and the action is followed and

interpreted.

1.3 Contribution

The original contribution of this thesis falls into the following areas,

e The common tendency in Computer Vision has been to encode objects in
terms of their geometric properties. We describe a generic encoding scheme for
complex and multi-featured objects which relies upon the number of features
present, not their position. The histogram of features represents the target

from a particular viewpoint.

e A fixation measure, a comparison of the histogram of the current view with
that of the target, was developed which gives an indication of the validity of

the current view.
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The encoding scheme was extended further to include higher levels of ab-
straction. The higher level within this hierarchy encodes features which are
highly specific to the target allowing successful segmentation from distracting

elements in a cluttered scene.

Segmentation of the target, based upon the encoding scheme, provided an
even more useful fixation measure which results in values for the direction and

distance to the target.

A visual fixation and tracking system based upon Perceptual Control Theory
is described. As opposed to conventional approaches the system controls its
input (the fixation offset) by varying the direction and wvelocity of its tracking
output.

The use of the compact foveal representation of the scene is combined with the
tracking control system and the fixation measure to produce a fast, real-time

tracker.

We demonstrate experimentally the unreliability of using camera calibration
data derived from a single view for different camera viewpoints. We also
present a resolution with a procedure for calibrating a mobile camera. The
method uses images taken at a finite set of positions covering the working
environment. The resulting calibration data is valid anywhere within that

area.

Thresholds for target object match values were determined experimentally.
These thresholds allowed the database search and match facility to confirm

the identity of an object without searching the entire database.

Temporal modelling is used to guide the processing of a vision system and
the movement of its mobile camera module. This is achieved by modelling
the expected evolution of scene events as grammatical rules and facts within

a production system.

The vision system described towards the end of this thesis signifies a major
step forward in the paradigm of Computer Vision systems representing as it
does one of the first systems of its by integrating diverse visual modules to form

a coherent whole as well as implementation as an actual working prototype.
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1.4 Outline

In the remainder of part I of this thesis we go back to the roots of the study of
intelligent systems by a brief look at the history of modern AI, as well as discussing
the different methodologies of computer vision, to put into context the current ap-
proaches to research into perception and behaviour. Parts II and III separate the
two diverse areas of research reported. Part IT concerns Perceptual Control Theory
(PCT). We start with an introduction to the theory and describe how it provides
a possible explanation for all types and levels of the behaviour of living systems.
Chapter 4 describes some simple experiments which show the behaviour of a single
basic control system. We digress slightly in chapter 5 to explain the structure and
use of the foveal representation of the visual scene which is used later in the fixa-
tion experiments. The last chapter in Part II brings together the control systems of
PCT, the techniques of foveal fixation and simple colour segmentation to realise the

functionality of automatic visual fixation to multi-coloured objects.

The research in Part III takes a more conventional approach to artificial systems.
Chapter 7 outlines the aims of the recent Vision as Process (VAP) project along
with a description of the corresponding architectural design for an integrated vi-
sion system adhered to by this research. One of the major obstacles to building a
successful mobile vision system is determining the spatial relationship between the
camera, which will be at many different positions, and the external world. This
process, camera calibration, and the issues involved is discussed in chapter 8, along
with our technique for overcoming the multi-view problem. The results of our cam-
era calibration method are made use of in chapter 9 to show how the location of an
object, predicted by a moving camera, is maintained accurately with respect to its
actual position. The last chapter of Part III combines the preceding concepts and
techniques and extends the visual system to include control of the camera viewpoint
and the computational processing resources by means of scene evolution models of

dynamic scenes.

We conclude in Part TV with a general discussion of research perspectives and a
summary of the two threads of research as well as laying out some recommendations

for future work.
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Chapter 2
Perception and Behaviour

It is wise, and courteous to the reader, to define terms prior to a discussion. A prob-
lem arises, however, with respect to Artificial Intelligence given that intelligence
itself is a somewhat vague and high-level concept and the knowledge of the founda-
tions and the processes which give rise to intelligence are largely unclear. Therefore
we will leave to the philosophers the actual meanings of the concepts and instead
describe the types of approaches which have been taken in the field, with particular

reference to perception and behaviour.

We start with a brief look at the history of Al and describe the different ways
people have thought about what constitutes intelligent agents and how those views
have changed over the years. In the second part of the chapter we apply a similar
discussion to the specifics of vision, concentrating on the advantages (and necessity)

conferred on visual systems by being able to interact with their environment.

2.1 A Brief History of Artificial Intelligence

Although a number of different disciplines, such as psychology, philosophy, biology
and neuroscience, have been around for many years with the aim of studying in-
telligence, there are two main factors which not only gave birth to modern AI but
also shaped its research goals and methods over the next few decades from its in-
ception in the middle part of this century. Those two factors were the advent of the
modern computer and the work of the mathematician, Alan Turing, who was widely

recognised as the father of Al.

During the second world war Turing contributed significantly to the successful at-

tempt by the Allies to crack the German “Enigma” code. The problem was overcome

13
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by applying the necessary mathematical principles to a mechanical device which was
able to carry out the vast amount of computations involved in a fraction of the time
it would have taken a human. It was perhaps inevitable, given a seemingly “in-
telligent” operation, that great interest arose, establishing a proper link between
mathematics, computers and intelligence. Spurned on by Turing’s later ideas [115]
the field of AI was born, distinct from the conventional life sciences, as a discipline
concerned with tackling what were, essentially, mathematical problems with some
relation to human intelligence. The types of problems tackled were those which, it
was thought, required high-level cognitive skills: those involving reasoning, problem
solving, planning and logic, problems such as chess, the travelling salesman, the
Towers of Hanoi, expert system design and natural language processing [63, 96]. It
is no coincidence, given the mathematical background of the main participants, that
the problems tackled were, on the whole, well-defined mathematically and somewhat

remote from the real-life behaviour of living systems.

These early approaches followed a particular philosophical attitude towards human
cognitive processes. This viewpoint was known as the Physical Symbol Systems
Hypothesis which stated that the

necessary and sufficient condition for a physical system to exhibit general

intelligent action is that it be a physical symbol system [78].

The implication was that any system exhibiting general intelligence was a physical
symbol system (a symbol manipulator), and that any physical symbol system (e.g.

digital computers) could (given the right configuration) exhibit general intelligence.

One of the main techniques to come out of AI research was that of Search, which
involved ways of finding the optimal solution from a large number of possibilities.
For example, with chess it involved looking many moves ahead in order to determine
which current move would provide the best route to winning the game. Similar com-
putational approaches were taken with early, and subsequent, research into artificial
vision. Although these programs have become quite sophisticated in recent years
(chess programs have reached the level of Grand Masters) they gave no insight into
the nature of human intelligence. The methods and processes used by the programs

to solve the problems were not the same as those employed by humans.

Computer Vision did not take off until the early 1980’s with the advances in com-
puter processing power and the work of people such as David Marr. In his seminal

work, Vision [67], he outlined a computational approach and architecture for vision
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systems, though concentrating on how information, such as texture and shape, can

be derived from single, static images.

Artificial Intelligence never fulfilled its early promise, and so, due to the resounding
failure of the traditional approaches, in the late 1980’s and early 1990’s a number of
researchers moved away from looking at high-level human cognition to more humble
(though certainly not more simple) problems faced by more simple agents when
navigating their environment. This branch of AI, known as Artificial Life, took
a bottom-up approach and began to look at such things as visuomotor control in
insects [36], simple navigational behaviours [10, 14, 31, 68] and ways of evolving

simple artificial creatures [25].

In contrast to the detached symbol manipulating systems of traditional AI these
new branches were inspired by biological living systems and were primarily con-
cerned with the interaction between the system and the environment. Harnad [46]
had suggested that mere symbols were meaningless without a grounding to the en-
tities they were supposed to represent. These new lines of research provided that
grounding by furnishing the systems with sensory abilities in order to perceive the
world. Even with symbol grounding the Physical Symbol System Hypothesis was
no longer sufficient, or adequate, to describe or explain the interactions or dynamics
of the new approaches. The new philosophical viewpoint to arise came to be known
as the Dynamical Systems Hypothesis (DSH) [103, 117, 118, 119] which concerns the

continuous change (of variables) within the environment and interacting agents.

Meanwhile, throughout the decades from the 50’s to the present day a quite differ-
ent theory of perception and behaviour within living systems was being developed
independent of mainstream Cognitive Science, a theory which did not fit easily with
the conventional stances of the life sciences or AI. PCT [87] explains the functional
architecture and basic mechanism of the nervous system as control of input. What
this means is that living systems are constantly acting in order to bring inputs (per-
ceptions) in line with desired values (goals). In other words, behaviour controls
perceptions, or output controls input. For example, the diameter of the iris in the
eye changes in order to achieve the desired amount of light falling on the retina, or
we act (stealing or not) in such a way as to achieve (or maintain) our perception
of honesty. This concept is in stark contrast to the usual view of a cause-effect

relationship from inputs to outputs (stimulus-response) or the control of behaviour.

The control systems described by PCT are undoubtedly dynamical in nature, how-
ever it would be an injustice to describe PCT as merely a Dynamical Systems Theory.

Invoking the DSH as a system model is only descriptive whereas PCT and its as-
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sociated language are explanatory. For example, both weather systems and living
systems are dynamical in nature. Dynamical Systems Theory may well describe,
from the viewpoint of the observer, what is going on in both systems but does not
ezplain the underlying nature and mechanisms from which that observed behaviour
arises. The difference between the two is that living systems are actively controlling
variables to keep them in certain states instead of being at the whim of natural

forces.

2.2 Vision

The predominant theme running through the Machine Vision arm of Al has been
that of reconstruction. The idea was to analyse single, static images with the purpose
of constructing three dimensional models of whatever objects were present in the

scene. Marr, one of the most influential proponents in this area, regarded vision as

the process of discovering from images what is present in the world and

where it is
and so is,
first and foremost an information processing task. [67](p. 3).

A task that creates internal representations of the world from retinal images. Marr
followed the policy of least commitment which states that it is necessary fully to

process all visual stimuli in case the resulting information might be required.

There seems little reason to believe that such a reconstructive process is the basis
on which animal or human vision is founded [5, 122], especially considering the
arguments suggesting the intractability of the approach [108, 123]. Of course, there
may be applications where 3-D reconstruction is desired or suitable, but the lack of

such a strategy in a visual system should not be, a priori, any indication of failure.

The non-traditional approach to vision advocates the policy of most commitment
[5, 75] and emphasises the advantages of active or animate vision. The policy of
most commitment specifies that it is only necessary to process what is required
for the problem at hand. Most of the time it is not necessary to build complex
representations, as objects can be discriminated by a relatively few distinguishing
features [17]. If a particular viewpoint is not optimal for discrimination, attentional

action based upon selected target characteristics enables an animate vision system
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to move to a more suitable position. Such action basically carries out what would be
computationally expensive model transformations with the passive, reconstructive
method [108]. Action also allows a system to gather information that is actually a
reality instead of trying, perhaps incorrectly, to fit an internal model to a distorted

view. In effect, an animate vision system can use the world as its own model [9].

Nelson [76] suggests that vision is more suited to recognition, identifying relevant
situations, than reconstruction, the general transformation of information between
different forms. The reconstructivist approach processes information without any
regard for its relevance for the animal, whereas recognition is only concerned with

specific problems of interest.

In the natural world there are many different types of visual system, from simple
pit eyes of a few receptors to human eyes with a cornea and lens and thousands of
receptors [60]. Eyes may only be of use to distinguish light and dark areas, if that is
all the animal needs to know. In fact there is often a close correspondence between
the physiology of the eye and the ecological niche of the animal. For example,
the higher density ganglion cells of animals in flat, open environments are formed
in “visual streaks” corresponding to the horizon, whereas the density in arboreal
species is radially symmetrical [60]. This would indicate that the function of visual
systems arose out of a reaction to relevant aspects of the environment and not as a

method of identifying all aspects.

Animals need to be active in order to survive [39, 76]. They must be able to crawl,
swim, run or fly around in order to find food and avoid predators. Also, they must be
able to discriminate between safe and dangerous aspects of the environment, which

is what the senses, vision included, are used for.
The purpose of visual systems is governed by the environment and is not simply a

means of recording it. In other words,

biological vision evolved to permit animals to act within, and react to

their environment [75](p. 5)
and,

The satisfaction of getting things right is not much compensation for be-
ing eaten because you took too long to decide what was rushing towards
you [102](p. 21).

Furthermore, to avoid redundant and time consuming (and hence potentially fatal

to the animal) processing,
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The economical way to organise a nervous system is for perceptual mech-
anisms to detect whatever information is needed to guide the animal’s

activities, and no more [17](p. 250).
The consequence is

that vision is more readily understood in the context of visual behaviors
that the system is engaged in, and that these behaviours may not require

elaborate categorical representations of the 3-D world [5](p. 1635).

The way that areas of interest are found and investigated is by actively controlling
the parameters of visual sensors of a system to enable it to interact in real-time with

a complex, dynamic world; Active Vision [8, 108].

2.3 Summary

To clarify the terminology, and to put into context the research topics of this thesis,
here are the broad definitions of the categories of the machine and natural vision

found in the literature.

Active sensing The reconstruction of shapes and surfaces by actively projecting
an infra-red signal onto an object. The signal, usually in a grid, is extracted
from images and, by analysing the pattern of distortion, the surfaces are re-
constructed. Active sensing is not the topic of this thesis but is noted here as

it is sometimes called Active Vision.

Reconstructive Vision Constructing 3-dimensional geometric models of objects
from single or multiple images by extracting primitive visual elements such as

edges and outlines.

Active Vision Machine Vision involving the control of parameters such as, posi-

tion, orientation, focus, zoom and aperture of a mobile camera system.

Animate Vision Concerns visual behaviours that a system is engaged in while it

is interacting with its environment.

Perceptual Control Although an all-encompassing theory of living systems, in
terms of vision it concerns how actions control desired visual perceptions, or

goals.
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These categories are by no means mutually exclusive and most research involves
overlaps between different areas. Part II of this thesis falls into the last category,
though it does incorporate some more traditional feature detection techniques. The
significant aspects of this theme of research is that it is concerned with low-level be-
haviours of living and environmental systems which are dynamic in nature and often
unpredictable, precluding the more traditional approaches of predictive modelling
or symbol manipulation. Concerned as it is with low-level visual control this area of
research could be seen as a potential module for the system which is the subject of
Part III of this thesis. The roots of Part III are to be found in the more traditional
Active Machine Vision paradigm with some leanings towards reconstructive vision.
The goal is to take a high-level view of the problem and to integrate diverse mod-
ules displaying different visual behaviours in order to control parameters of both the

internal processing and position of the system.

The overriding principle of both areas of research is that perception performed in
isolation of action results in systems of very limited usefulness, or even, in terms of
natural systems, a grossly inaccurate portrayal of the intimately entwined nature of

perception and behaviour.
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Chapter 3

Perceptual Control Theory

3.1 Introduction

Perceptual Control Theory (PCT) [65, 87, 88, 91] offers a radically different way
of viewing the operation and functionality of living systems in contrast to the view
conventionally held in Cognitive Science. The traditional way of looking at how
living systems, including humans, work is that the output of the system is controlled
[11, 15, 22, 33]. That is, the organism computes, or determines, specific actions
necessary to carry out a task from its perception of the current state of the world.
In other words, perceptions control actions, inputs control outputs or stimuli control
responses. To put it another way, there is a direct relationship from the inputs of

the system to its outputs.

PCT, on the other hand, claims that what living systems are actually doing is varying
their outputs to control their inputs. Specific actions are not computed, but rather

action is varied in order to bring about a desired input (perception) or goal [24, 26].

At first glance the differences between these two philosophical stances may seem
merely semantic. However, as we shall see, the adoption of one viewpoint or the other
leads to completely different (and perhaps incompatible) notions, methodologies and
goals for both our understanding of natural living systems and the design of artificial

systems.

In this chapter we explain the ideas and concepts behind PCT contrasting with
those of conventional Control Theory and Cognitive Science as an introduction to
the next few chapters which describe some preliminary research into vision systems
based upon PCT.

23
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3.2 Some Examples

For the benefit of the reader not familiar with PCT we first describe a few everyday

examples of PCT in action.

A graphic example of PCT is manifest in the everyday activity of driving a car.
The most important aspect of driving is to keep the car in the correct lane in order
to avoid accidents. In PCT terms this is achieved simply by adjusting the steering
wheel (output) according to a perceived position (input) of the car. The amount the
wheel is turned does not need to be specifically calculated, the wheel is simply turned
until the car is perceived in the appropriate position. This method will effortlessly
overcome any disturbances to the system whether they be due to internal changes
or external influences, such as a wind acting upon the car. Contrast this with
a non-control system, which could be called a measure and model approach. As
with PCT it is necessary to represent in some way how far away the car is from
a desired position, but it is now also necessary to relate that error to a specific
amount that the steering wheel needs to be turned in order to bring the car back on
course. Obviously, this requires precise calibration of the relationship between not
only the steering and driving wheels, but also between the driver and the steering
wheel. A wind force would influence the car’s position so this would also need to be
measured and its effects modelled and compensated. Many other factors can also
affect how the car behaves such as tyre pressure, road surface and engine condition,
all of which would need to be measured and modelled in an open-loop approach that
requires the computation of a specific output. PCT greatly simplifies the situation
by controlling the input and dispensing with the need for measuring and modelling

the environment.

The operation of the iris in the eye is traditionally seen as a stimulus-response
system. The change in lighting conditions (stimulus) in the environment induces
a response, a corresponding change in the size of the iris. The PCT view would
say that there is a certain amount of light falling on the retina which is desired
by the brain. The size of the iris is then varied in order to maintain that desired
amount of light. Although the external lighting conditions may be changing, the
perceived amount of light (the input) remains constant due to the changing output
(iris size). At no point is there a correspondence between the lighting conditions
and the size of the retina. For example, imagine the case where the external lighting
conditions remain constant but the desired input changes. In this situation the iris
size (response) will change even though there is no “stimulus”. Alternatively, there

could be a situation where both the external lighting conditions and the desired
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amount of light are changing in the same direction and are balancing each other
out. In which case the size of the iris would remain constant. In other words there

is a stimulus, but no “response”!

As a final example, consider the simple task of picking up a cup of coffee. The
traditional approach to this task (as reflected in the robotics research [45, 38]) is to
compute the specific muscle tensions required to place the hand in the right posi-
tion to pick up the cup. The next step is to compute the changes required in those
tensions to move the cup through the correct trajectory to the lips. Computation-
ally, this is a horrendous problem involving specific variable values for thousands of
muscle fibres. If not exactly right the cup could shoot off in any direction. Further
complicating matters is the fact that each time you take a sip the weight of the cup
is different requiring a different set of values for all the variables. To get this right

it would be necessary constantly to measure the weight of the cup of coffee!

From the PCT viewpoint it is not necessary either to know the weight of the cup or to
compute specific values of the muscle fibres. The tensions in the muscles are simply
varied so that the cup, or hand, is in the desired position. If the cup were going in
the wrong direction the tensions would be changed (not by specific amounts) until
the right direction was achieved. The same applies with the changing but unknown
weight of the cup. The outputs are varied in order to maintain the desired feel or

view (perceptions) of the cup’s position and trajectory.

3.3 PCT Terminology

The basic architecture of a Perceptual Control System is shown in figure 3.1. There
are four main signals involved. The perceptual signal, p, is the input to the system
and is the variable which is controlled. It arises as a result of some input function
which converts external variables to an internal signal. In the case of the eye example
it is the amount of light detected on the retina. The input function comprises the
operation of retinal cells which convert the light on the retina to internal signals.
The reference is the desired value for the perceptual signal. The error signal is the
difference between the reference and perceptual signals and provides the motivation
for a control action of the system. The disturbance signal (the only one outside the
system) represents elements in the environment which affect the perceptual signal,
i.e. the changing light conditions in the eye example or the wind in the driving

example.

There are two other key functions which are characteristic of a Perceptual Control
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Figure 3.1: PCT Model
[General model of a feedback control system and its local environment

(Reproduced with permission from Powers [87], p. 61)]



3.4. The Conventional Error 27

System apart from the input function already mentioned. They are the comparator
and the output function. The comparator basically subtracts the perceptual signal
from the reference signal to give the error signal, which is some representation of
how far we are from the goal. The output function transforms the error signal into
some actions or outputs of the system. In the eye example, the output would be
to change the opening of the iris to increase or decrease its size depending upon
the sign of the error signal. However, it is not necessary to compute some specific
amount for which to change the size of the iris, but as the perceptual control system
is a continuous feedback system the output would change the size of the iris until
the error signal becomes zero. The essence of a perceptual control system is that it
is a continuous negative feedback system counteracting any disturbance to the input

signal.

3.4 The Conventional Error

Feedback control systems which regulate a variable in the face of unpredictable
disturbances are nothing new. Two hundred years ago James Watt invented the
centrifugal governor, the initial application being to control the speed of a steam

engine. Since then control systems have been applied in countless situations and

can be studied under the discipline of control engineering [3, 37, 111].  There is
Input Error Output
- = — > Controller Output > Load
Element
Feedback

Figure 3.2: Standard Modern Control Theory model

also nothing new about the application of control theory to the behaviour of living
systems. What is new, however, is how control theory is interpreted in the realm
of living systems. As we shall see a gross error is made in the conventional life
sciences when applying control theory to living systems resulting in a functional
and architectural view of living systems which is both unnecessarily complex and

incompatible with the actual function of living control systems.

Let us first go back to the basic control system as shown in figure 3.2. The purpose
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of this system is to maintain the output variable at a particular value corresponding

to the input or goal.

A more concrete example is shown in figure 3.3, with a system for controlling the
speed of an electric motor. A sensor measures the actual speed of the motor which is
compared with the desired speed, in the error detector (comparator). The controller
either increases or decreases the voltage applied to the motor according to the sign

of the error (difference in speeds) and by an amount proportional to the size of the

error. For example, if the actual speed is less than the desired speed the voltage is

Desired Aoly ol Actual

Speed Error apply vollage Electric Speed

- > — > Controller > > Load

Motor
iiiiii |
: Measured |
, Speed :
Feedback

Figure 3.3: Modern Control Theory model of electric motor

increased until the error is zero and the desired speed is reached. These processes
are performed continuously and simultaneously until the desired speed is reached.
So, in the terminology used in the diagram the control system is controlling the

output of the motor.

Given the unpredictable nature of the world it would seem natural and logical that
living systems utilise the principles of control systems. Now let us try to redraw
the control diagram in terms of living systems (figure 3.4). As we all “know” the
inputs and outputs of living systems are, respectively, their perceptions (stimuli)

and motor actions (responses). It naturally follows that if we apply control theory

Inpgt Output
(Perceptions) Error Muscle (Actions)
- —>1 Controller S > Load
ystem
Feedback

Figure 3.4: Modern Control Theory model for living systems
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to living systems then what living control systems do is to control their actions, or
outputs. However, let us examine the diagram more closely. At the comparator we
are trying to compare two signals, perceptions and actions, which are of an entirely
different nature. How, for example, do you compare the visual information you are
receiving about the position of you hand relative to a tea cup with the values of
muscle fibre tensions in your hand ? Supposedly, we could introduce a transducer
to convert from one signal to another, as can be seen in the iris control system of

figure 3.5.

Input Desired \ . Actual
(light) Size Error muscle tensions. Eye Size
— Controller - — 4
Model (of iris). \ 7 Muscles Load

Sensed
Size

Feedback

Figure 3.5: Modern Control Theory model applied to iris control system

In this case we have a model which relates the incoming light to an appropriate
desired size of iris which can then be appropriately compared with the actual size
and then suitably controlled. At first glance this may seem reasonable, however there
are a number of serious flaws with this setup. First, a complex model is required in
order to derive the correct size of iris from the incoming light. Second, there must
be some way of sensing the current state of the output, the iris size. Finally, and by
no means the least, this system is not directly controlling the actual goal which is
the amount of light falling on the retina. If there are any imperfections in the model
then the amount of light falling on the retina will be incorrect even though the size

of the iris is right.

However, these problems are merely symptoms of a much more basic and mundane
flaw: the terms used in control theory and conventional life sciences do not refer
to the same variables [88]. In other words, the “input” and “output” of control
theory are not compatible with the terms “input” and “output” as they are used
and understood in the life sciences. If we look again at the first control diagram
(figure 3.2) we see that the input is the goal value of the output and the value
which is fed back from the output is the sensed value of the output. The actions
are actually between the controller and the output element (see the application of
voltage in the motor example). So let us relabel the diagram with less ambiguous

terminology, as shown in figure 3.6 and then using this terminology, re-apply control
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theory to living systems in the context of the eye example, as detailed in figure 3.7.

Figure 3.6 shows a control system with the goal variable being compared to the

actual or sensed value. A physical element is changed, according to the error,

Goal Error c . Action Physical Actual
R —>] > >
ontroller Element Load
Sensed or
Measured
Feedback Value

Figure 3.6: Modern Control Theory model with general annotations

which affects the variable being measured. Figure 3.7 shows the correct way of
applying the elements of goal value, sensed value and action to a perceptual system.
What is now being controlled is not the size of the iris, as in figure 3.5, but the
sensed variable, the light on the retina. Now it can be seen that there is no need for
elaborate models relating inputs to outputs, no need to sense the output and the

goal is being directly controlled.

DeSired Increase or decrese ACtual ]-‘,ight
Perception Error Controller muscle tensions | Eye on Retina o Load
(light on (Output Function) Muscles
retina)
Sensed
Light

Feedback

Figure 3.7: Perceptual Control Theory model of iris control system

This error, of misapplying the terminology of control theory to living systems has
added support to the enduring view of living systems as stimulus-response systems.
PCT offers an alternative view which is both clearer in conception and simpler in

operation.
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3.5 Hierarchical Perceptual Control Theory

The value of PCT comes not only from the recognition that in the application of
control theory to living systems, such systems control their inputs, but also from the
acknowledgement that Perceptual Control applies to all levels of the behaviour of
living systems. Hierarchical Perceptual Control Theory (HPCT) extends the basic
ideas and principles of PCT to add the different levels of behaviour within living

systems.

All living systems are made up of a hierarchy of interdependent levels of percep-
tual control systems. At the lowest level the inputs come from the environment.
Higher level systems take their inputs from the inputs of sets of lower level systems
and so represent increasing levels of abstraction from the sensed raw environmental
variables. The outputs of the higher levels combine to form the reference signals of
the lower levels. Using the eye example again, there may be different amounts of
light desired on the retina depending upon the task at hand. If you are just sitting
around doing nothing in particular, the amount of light falling on your retina may be
relatively unimportant and have one particular value. If, however, you are reading
a book there is a particular level of light which is most suitable. So, at some higher
level there will be a desire to read the book which will output signals for the light

which is suitable for the task which sets the reference for the iris control system.

Below we briefly describe each of the levels currently identified within HPCT for
humans. It should be noted however, that these levels are not cast in stone and only
roughly describe the different types of behaviour associated with human beings,

which can be associated with distinct levels of control.

Intensity The lowest levels of perception (controlled variables), are those which
represent the only level which has the direct experience or interface with the
environment, intensities. Here we a talking merely about the neural signals
that arise when the environment impinges upon our bodies. Those intensities
may be the signals when your skin is touched, when light falls on your retina or
when sound vibrations reach your ears. The lowest level, then, is the intensity

of stimulation of sensory nerve endings.

Sensations Our experience, however, is not simply a matter of the intensities which
arise in sensory nerve endings. What we normally refer to as the senses taste,
touch, smell, sight and sound are not direct experiences of the world but are

collections of intensities of nerve impulses. Colours are perceptions which are
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combinations of many different intensities that arise within the retinal nerve
cells. Sounds are perceptions arising from collections of many nerve cells within

the ear. Sensations depend upon a multitude of signals from the intensity level.

Configurations In turn the next level of perceptual experience, configurations, de-
pend upon collections of sensations. To experience the perception of an object
depends upon many different sensations of colours, shadings and textures, for

example.

Transitions Our perception of the world does not consist only of static percep-
tions, but also of changes within, and of, configurations. Motion, for example,
depends upon a series of different configurations. The perception of a musical

melody depends upon a changing set of configurations of musical notes.

Events The next level of perceptions is events, which are units of perceptual ex-
perience which have a beginning, a middle and an end. A spoken word, for
example, could be seen as a unit of perceptual experience which consists of a

set of transitions between different morphemes of spoken language.

Relationships Events themselves are independent of each other, but how those
events relate to each other gives rise to different experiences at the relationship
level. A vase on a table is a different perceptual experience than a vase under
a table. The experience of watching a TV depends upon the relative position
of the TV and your line of sight. As we go up the levels, perceptions become
more and more abstract, in that it gets increasingly difficult to put your finger
on something in the world and to say that here is that perception. You can
not look at the world and point to the existence of a relationship perception

involving yourself and the TV.

Categories Perceptions are things which exist only within ourselves and are not
in the external environment. Categories take this a stage further in that they
refer not to specific objects within the world but to collections of things that
have similar attributes. The category of a chair, for example, does not refer
to a specific instance of a chair in the “real world”, but to things which have

the attribute of being able to sit upon them.

Sequences The order in which we perceive things is also important and gives rise
to different experiences. The perception of a dog chasing a cat is not the same
as the other way around. The ordering of words in a sentence is vital to our

perception and understanding of language.
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Programs Whereas a sequence is a straight ordering of perceptions and events, a
program involves choice points. Until the program is in action it can not be
determined what the result of these choice points will be. They will be de-
pendent upon the actual perceptions experienced. For example, when driving
from A to B your driving behaviour will depend upon the state of the traffic

lights at which point you have to make a choice, if red “stop”, if green “go”.

Principles We choose particular programs of behaviour in order to maintain certain
concepts of principles, such as honesty or trust. To maintain the perception
of ourselves as being honest we behave in such a way, such as not stealing, so
as to maintain that perception depending, of course, upon our own definition

of honesty.

System Concepts At the highest level sets of principles are brought together to
maintain system concepts, such as democracy or law. If our democracy is

threatened we protest or go to war.

Some important implications of HPCT are that perceptions depend upon other
perceptions and that all of experience is perception. Although there may well be
an objective reality “out there” our only direct experience of the “reality” is at the

level of intensities. Everything else are internal phenomena of our mind.

3.6 Another example

It may not be immediately apparent how the different levels interact and fit together,
therefore in this section we present another example, of the common task of writing a

letter, which involves, and requires, the control of variables at many different levels.

The standard view of such a task is that at some point in the brain a command
is issued to “write a letter”, which is then converted into motor outputs and “hey
presto”, a letter appears. Hopefully, it is clear to the reader that there are some
serious problems with this approach. First, that some very complex computations
would be necessary to perform the task. Second, the process could not cope with
any unpredictable events which interfered with the task. Finally, if it were the case

that we control our outputs we should then be able to perform the task blindfold.

The PCT approach, on the other hand, would say that we start off with a reference

perception which represents the state of your perception when there is zero error,
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when the goal has been achieved [90]. In this case the reference is more of the form

“a letter has been written”.

To start with we may be at the program level when we want to define the type
of letter. So we will have a program saying something like ”if business letter then
sequence A, if personal letter then sequence B”, where the sequences define the
different parts of the letter like address positions, date, signature etc. The output

would be a sequence that we want to perceive at the next (lower) level.

So, to actually write the letter I am sitting at my desk with pen in hand and paper
oriented correctly in front of me. I am writing a business letter so the reference set
at the sequence level is sequence A (my address top right, date, their address top

left, opening, body of letter, signature).

But first I have to position my pen, so I control a relationship between the tip of
my pen and a point on the paper a couple of inches in from the right at the top.
The perception being the difference, visually, between pen and point. The output

is movement of the hand. When they coincide no further action is taken.

The element “my address top right” is also a sequence of distinct events starting
with my name. My name is yet another sequence, of letters. Controlling a sequence
involves setting the references of lower levels in a certain order. So to write my
first name I control the sequence of letters R-u-p-e-r-t, first setting a lower reference
of "R”. The other letters will not be set as references until the preceding one is

complete.

The letter "R” is a reference at the configuration level. To write the letter "R”
requires controlling the position of the pen (relationship), the speed of movement
of the pen (transition), the feel of how tightly the pen is held (sensation) and the
sensed forces of the fingers (intensity). I write the letter "R” in one go starting
bottom left. T hold the pen firmly, but softly, applying enough (but not too much)
pressure on the paper such that it is easy to move the pen across the paper and
that the shade of ink is to my liking. I move the pen across the paper in a swift
movement that allows the tip constantly to change position resulting in the letter
"R” appearing. The processes continue on in this manner until the entire letter is

written.

It is difficult to convey the true state of affairs in the written medium and so it is
useful to bear in mind that we are talking about a massively parallel set of massively
connected neural control systems such that many different variables at many different

levels are being controlled simultaneously. So while T am controlling the variable
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related to the pressure of the pen on the paper I am also controlling a variable
related to the sequence that makes up my address as well as the orientation of my
head related to the paper, the dryness/wetness of my throat, the light falling on
my retinas, the letter writing program, and probably millions of other variables of

which we are totally unaware.

3.7 Learning and Re-organisation

Control systems are not born with the ability to be able to control variables, at all
levels. Like anything else the abilities need to be acquired. Initially, according to the
nature of the organisation of the nervous systems, the actions you are able to take
may be ineffective against the variables you are attempting to control. Furthermore,
you may not have the perceptual apparatus in place to be able to perceive things

which are affecting you.

Powers [87, 91] postulates that at a fundamental level human control systems con-
tinually perform to keep certain intrinsic physiological and biochemical variables
at particular values. Such variables include body temperature, blood glucose lev-
els and carbon dioxide levels. When these variables are not at their correct values
then intrinsic error is experienced. Whenever intrinsic error persists re-organisation
[87, 85] within the nervous system takes place. That is, connections between nerve
cells are altered. If this re-organisation has no positive effect on reducing the intrin-
sic error it continues. If, however, the effect of the behaviour of the new structure
of the nervous system does reduce the error, then any re-organisation is stopped or

delayed. In this way the system learns to control.

3.8 Significance of PCT

PCT offers a quite different view of and approach to the study of living systems [92]
than that commonly held within the conventional life sciences. From a philosophical

perspective there are a number significant advantages to think the PCT way.

Although the universe appears extremely complex Science has shown that the un-
derlying principles are simple. In terms of living systems, evolution by its very in-
cremental nature produces beings built upon simple underlying principles, although
their behaviour may appear to be very mysterious and complex. In contrast to con-

ventional approaches PCT provides a simple process, the control of input, which is
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able, theoretically, to account for behaviour at all levels of experience, no matter
how complex it appears. The control processes involve only simple “computations”,
such as subtraction and integration, which are certainly plausible in terms of neural

function (see chapter 3 in [87]).

Of great concern to the Cognitive Science community is how the world is represented
[13, 12, 19, 23, 21, 116] in the brain. GOFAI (Good Old-Fashioned Artificial Intel-
ligence) such as the Physical Symbol Hypothesis [78] favours strong representation
where symbols have direct and discrete neural representations in the brain. The
problem with this view of representation is how it can occur. PCT is only concerned
with control and controlled neural signals. Whether or not they could be said to
represent anything in the world is incidental, what is important is the ability to
control perceptions. In this sense the variables in the brain have no, or weak, repre-
sentation. For similar reasons PCT does not require geometric or predictive models

to be explicitly represented.

One of the most profound and far-reaching implications which arises from the PCT
view of living systems is that behaviour is a side effect of perceptual control. Psy-
chological research has concentrated on studying this behaviour with an aim to
discovering more about how people work. From the PCT standpoint the standard
approach is misguided and the majority of previous psychological research requires,
at best, re-evaluation. Marken [66] draws the distinction between the study of per-
ceptual control and the study of observed behaviour by the analogy of the Dancer
and the Dance. The dance is the observed side-effect of the dancer’s efforts to con-
trol many perceptual variables. To study the dance as opposed to the dancer and
his controlled variables is to miss the point. Even worse, behaviour may have little
to do with the control system but actually reflect an external disturbance applied to
the system. For example, in the case of the driver counteracting the effects of wind
on the car’s position, any steering behaviour is actually reflecting what the wind is
doing. Measuring and studying this behaviour will tell you about the disturbance

but not about the control system.

3.9 Conclusions

Apart from being a candidate for an all-encompassing theory of Perception and
Behaviour within living systems PCT provides a practical way of coping with the
unpredictable nature of the world in terms of low-level interaction with the environ-

ment. This fits in well with the general aims of the Active Vision paradigm with
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which this thesis is concerned. Low-level visual modules based upon PCT could
provide an efficient and robust way of maintaining successful interaction between

the world and a high-level vision system.
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Chapter 4

Basic Perceptual Control

Systems

4.1 Introduction

Given the dynamic nature of control systems, attempting to communicate their op-
eration and function through the static medium of the written word is not the ideal
method. The reader, therefore, is strongly encouraged to try out for themselves any
of the real-time, interactive demonstrations available. A set of PC simulations can be
down-loaded from ftp://burkep.libarts.wsu.edu/csg/billdemos/. More readily acces-
sible are some online Java demos at http://home.earthlink.net/~rmarken/demos.html.
In both cases the simulation of the tracking task is recommended. Also highly rec-
ommended is the control demonstration of the walking behaviour of a six-legged
bug, http://www.sys.uea.ac.uk/~jrk/PCT/Archy/Archy.html.

The tracking task neatly demonstrates one of the profound implications of Percep-
tual Control Systems, that there is no correlation between the inputs and outputs
of the systems. In fact the output correlates with the disturbance applied to the
input. As already mentioned in section 3.8 the output is more a reflection of the

disturbance than of internal cognitive processing.

The tracking task has been discussed in detail elsewhere [48, 88]. In this chapter
we present some simulations of basic, single control systems. The purpose is to
investigate how the behaviour is affected both by disturbances as well as different

values of the control parameters involved.

39
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4.2 The Math

The mathematics which describes perceptual control systems is very simple. As
discussed in chapter 3 and presented in figure 3.1 the error, e, is the difference

between the actual and desired input perception,

e=r—p,
where 7 is the reference (desired) signal and p is the actual perception.

The output function which relates the error to action can be of a number of different

varieties. The most common are the proportional function,

0=ge

where ¢ is the gain, or amplification factor, and the integrating function,

o+ = (ge — 0)/s

where s is a slowing factor. The function of the slowing factor is to ensure that the
output changes gradually as in real physical systems, as opposed to instantaneously.

For simulation purposes the input function is,

t=o0+d

where d is the disturbance, and simply represents the concept that the input is

affected by the actions of the system and any disturbances.

Although the control signals are theoretically continuous variables, in these simula-
tions, due to the nature of computers, we must deal with discrete variables which
change from one iteration to the next. As the values can change during an iteration
we must be careful where we quote the value. For our present purposes the values

quoted are all at the beginning of each iteration.

One important point to remember in these simulations is that we are assuming that
all the signals have the same units or, at least, that the signals are unit-less. So we
may say that the magnitude of the output is the same as that of the disturbance. In
a real system this may not be the case. For example, in the iris control system any
disturbance is only relevant in terms of its effects on the amount of light entering
the eye, whereas the output is the size of iris aperture. It would be meaningless to
say that the output is the same as the disturbance. What we really mean is that

the effects of the output counteract the effects of the disturbance.



4.2. The Math 41

1.5
1.0 s
AN
o) / ~
o5}/ .
% ll \'\~\
© / e
®w ooft—— TTTrTmree—- =
©
[
2
o -05F
1.0 |
1.5 ‘
0 5 10
lteration
Disturbance
—-— Input
Qutput

Figure 4.1: Basic control with constant disturbance, s = 1500

‘ Iter. ‘ Ref. ‘ Input ‘ Error ‘ Output ‘ Dist. ‘

0 0.0 | 0.000 | 0.000 0.000 1.000
1 0.0 1.000 | -1.000 | -0.333 | 1.000
2 0.0 | 0.667 | -0.667 | -0.555 | 1.000
3 0.0 | 0.445 | -0.445 | -0.703 | 1.000
4 0.0 | 0.297 | -0.297 | -0.802 | 1.000
5 0.0 | 0.198 | -0.198 | -0.867 | 1.000
6 0.0 | 0.133 | -0.133 | -0.911 1.000
7 0.0 | 0.089 | -0.089 | -0.940 | 1.000
8 0.0 | 0.060 | -0.060 | -0.959 | 1.000
9 0.0 | 0.019 | -0.019 | -0.987 | 1.000
10 0.0 | 0.013 | -0.013 | -0.990 | 1.000

Table 4.1: Signal values for 10 iterations of control to constant disturbance, s = 1500
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Figure 4.2: Basic control with constant disturbance

4.3 Basic Control

In this section we present some graphs and tables of the results of some simple
simulations of basic control in order to illustrate the main points concerning the
behaviour and functionality of perceptual control systems. In all cases the value of

the gain is 500 and the reference is zero.

4.3.1 Constant disturbance

Figure 4.1 and table 4.1 show control with a constant disturbance of 1.0. The error
signal also starts at 1.0 as there is zero output. Gradually the output increases (in
a negative direction) to —1.0 and the error is zero at which point the input equals

the reference.

Table 4.1 shows the signal values for the first 10 iterations. Notice that the change
in output becomes smaller and smaller with each iteration. This is because the error

is decreasing and the change in output is a function of the error.

Figure 4.2 and table 4.2 show a similar situation except that the slowing factor is
less, 501, almost equal to the gain. Because the g/s ratio is &~ 1, the output change

is virtually the same as the error. In other words, the input comes to match (almost)
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‘ Iter. ‘ Ref. ‘ Input ‘ Error ‘ Output ‘ Dist. ‘

0 0.0 | 0.000 | 0.000 0.000 1.000
1 0.0 1.000 | -1.000 | -0.998 | 1.000
2 0.0 | 0.002 | -0.002 | -0.998 | 1.000
3 0.0 | 0.002 | -0.002 | -0.998 | 1.000
4
5

0.0 | 0.002 | -0.002 | -0.998 | 1.000
0.0 | 0.002 | -0.002 | -0.998 | 1.000

Table 4.2: Signal values for 10 iterations of control to constant disturbance.

the reference in one iteration. So far the slowing factor has been greater than the

gain value. This ensures that the change in output is always less than the amount
required to bring the input back to the reference value, thus avoiding overshoots and
oscillations. In other words the g/s ratio is less than 1. Let’s see what happens if
s < g. Figure 4.3 shows control with s=270 and so the g/s ratio is 1.85. At each
iteration the change in output is greater than the error, resulting in an overshoot.
With each iteration the overshoots decrease and eventually settle down. The reason
the oscillations die out, despite overshoots, is because the ratio of 1.85 means that
the magnitude of the error at the next iteration is determined by half this value, ie.

0.925. As this is less than 1 the error will always decrease.

Figure 4.4 shows the case where the oscillations do not die out but increase. The
g/s ratio is now greater than 2 (taking the one iteration lag into account). Again
the magnitude of the error at the next iteration is determined by half this value, ie.

> 1. Therefore the error will keep increasing.

The stability, and sensitivity therefore, of a control system depends upon the g/s
ratio. As long as s > g feedback will be negative and control successful. Figure 4.5
shows control with a variety of disturbances (¢ = 500,s = 501). In each case the
output counteracts the effects of the disturbance with the input remaining close to
the reference. The first, particularly, illustrates that the output correlates with the

disturbance and not the input.
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4.4 Basic Control with a transport lag

In real physical nervous systems signals are not instantaneously available, but take
time to propagate around the system. Here we show how the problems introduced

by transport lags need not be catastrophic.

4.4.1 Constant disturbance
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Figure 4.6: Basic control with transport lag and a constant disturbance, s = 1500

In Figure 4.6 a 10 iteration input lag is shown and the input signal displayed is that
at the comparator. In the first 10 iterations the input remains at zero even though
the disturbance is 1. Therefore, the error is zero and so no output. In iterations 11
- 20 the input is 1 as the signal from the sensors arrives. From iteration 11, as the
error is now non-zero, the output grows(-ve). Although this affects the outer input
immediately the effects will not reach the inner input for another 10 iterations. As
the inner input has not been affected the error is still large and unaffected resulting
in ever increasing output. From iteration 21 the effects of the output start to show
and the input starts to move towards the reference. However, it continues past
the reference due to the previous effects of the output which are only now showing
through. In iterations 21 - 30 the output changes direction as the error has changed
sign. The error keeps increasing as the input moves away from the reference resulting
again in increasing output but in the other direction. The system continues in this
fashion and oscillates out of control as the changes in output are too large for stable

control.
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Figure 4.7: Basic control with transport lag and a constant disturbance, s = 15000

Figure 4.7 shows the same situation but with a greater slowing factor. Once the
lagged input reaches the comparator the output changes much more slowly than the
previous system, due to the greater slowing factor. From iteration 20, although the
inner input is lagging behind the effects of the output the error is decreasing, such
that the changes in output are small enough not to cause an overshoot. Control
involving a transport lag is possible as long as the response of the system is slow

enough. The longer the lag the slower the response must be.

4.5 Adaptive Control

In this section we look at a control system with an adaptive output function [89].
With the basic control system we provided the function that transferred the error to
the output which was basically the amplification factor, the gain. Furthermore, it
only took into account the operation of the system at one point in time (the present).
Here the transfer function is learned by the system itself and extends into the past
by looking at previous error signals resulting in an output pattern generator which

would be able to maintain control even if the input signal is intermittently sampled.

4.5.1 More Math and Terminology

The output signal is a function of not just the current value of the error signal but

also past values. We can look into the past as far as we like and the extent is denoted
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by n, which represents the number of past program loops from the current position.
A weight is associated with each error signal value. Therefore, we have the same
number of weights as error values and the weighted sum of the error values gives a
value related to the change in output. The weights denote the amount of influence

each past value will have on the output.

The weights (which are initially zero) are adjusted by a small amount, on each
iteration of the program execution, defined by past error values, the current error
value and a learning rate. So, as the current error decreases (as control improves)

then so does the amount of adjustment.

The new value of the weight is,
tauj, = tauj,_, + lege;

where tau refers to the weight, [ is the learning rate, e is the error value (eg being the
current error), j is the weight number and i is the number of the current program
iteration. The result of this process is that the weights adapt to the pattern of the

input, generating appropriate output which keeps the error at a minimum.

The weighted sum w then is,

w = Z tauje;

i=1ln

and the output is,
0; = 0;—1 + gw

where ¢ is the gain, in this case acting as a scaling factor determining the amount

of allowable change in output.

The weights are also allowed to decay, which is necessary so that adaptation can

take place to a new pattern of input. If the decay rate is d then,
tatpew = talyyg — tatogd

signifying that the weight is decreased by a proportion of itself.

The following variables values are used in the simulations, unless stated otherwise,
gain g = 0.01, learning rate [ = 0.01, decay rate d = 0.0 and error history n = 100.
The mean error displayed in the graphs is the average of the error history, ie. the

average of the last n error values.
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Figure 4.8: Adaptive control with a constant disturbance

4.5.2 Constant disturbance

Figure 4.8a shows the control signals for 250 iterations of adaptive control to a
constant disturbance with the values of the transfer function (the weights) plotted
in 4.8b. The weights with a low weight number refer to the most recent error values.
So, from 4.8b the weight of the current error signal is about 0.27 and the oldest is
about 0.0. What this means is that the most recent errors contribute more to the

change in output than the oldest.

The graphs in figure 4.9 shows similar simulations but with slight variations of the
parameters to see what their effects are. For easy comparison figure 4.8 is repeated
in 4.9 a and b.

In figures 4.9c and d the gain has increased to 0.1. The result of this is that the
change in output at each iteration is greater compared to 4.9a and b, and so control
is achieved more rapidly. The transfer function, 4.9d, which reflects the past error
signal, has the same shape as 4.9b but is less stretched out as the error signal (which,
in these simulations is the inverse of the input signal) is more frisky in this case.
Moreover, as the reference is reached sooner than in the previous simulation the

weight values have had less time to build up, which is why they are lower.

Figures 4.9e¢ and f show control with a lower learning rate, of 0.001. In this case

adaptation takes longer and smaller changes are made to the weights.

In figures 4.9g and h there is a non-negative decay rate which means that when
the reference is reached, and the error is zero, the weights will decay to zero, as

shown. This is because the weight changes due to the decay are a function of the
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Figure 4.9: Adaptive control with a random disturbance
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weight value whereas, the weight changes due to learning are a function of the error.
Depending upon the values of the decay and learning rates there will be the case

where one cancels out the other resulting in the reference never being reached.

As with basic control there will be particular values of the adaptation parameters

which achieve optimal response as well as control with and without oscillations.

Figures 4.10, 4.11 and 4.12 show adaptive control to random, sine and square dis-
turbances, respectively. In each case control in the second case is worse due to the
decay factor reducing the magnitude of the weights. The transfer function for the
random disturbance case shows a recent peak with the remainder of the weights at
zero. This would indicate that, as would be expected, with random values, the only

useful error signal is the current value.

For the sine and square disturbance cases the transfer function reflects the pattern
of the historical error signal. If the input were removed, after adaptation, the output

would continue unaffected for a short time.

4.6 Summary

In this chapter we have presented simulations which demonstrate the main func-
tion of control systems, that the output of a properly designed control system will
counteract any disturbance, keeping the input close to the reference. How close
will depend upon the frequency of the disturbance. Transport lags are not a fatal

problem but can be overcome with the appropriate system parameters.

The perceived need to anticipate future events are often put forward [16, 42, 73] as
a reason for the necessity for predictive modelling as opposed to the simple control
systems described. We have also presented some preliminary demonstrations of
how perceptual control systems can anticipate, in a simple way, based upon output

pattern generation derived from adaptation to past input signals.
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Chapter 5

Foveal Fixation

5.1 Introduction

The great majority of animals have some type of visual system. One of the most
readily apparent observations of the visual behaviours of animals, including humans,
is that eyes are constantly moving, to attend to significant elements of the visual
environment. How such fixation could take place is the subject of this chapter and
the next. In this chapter we discuss some aspects of animal vision with particular
reference to the foveal distribution in the retina. We outline some of the advantages
of using the foveal representation [62, 128] of the scene over the more standard
uniform representation, the main issue being that the foveal representation provides
an intrinsic way of driving fixation. The fixation measure associated with the fovea
had been proposed for simple binary shapes [120]. In this chapter we describe how it
has been included in a framework which provides the capability for fixation to more
complex and multi-coloured objects [130], for use in the fixation control system in

chapter 6.

5.2 Animal vision

Evolution has derived a vast variety of visual systems [51, 59, 82, 83, 80, 125]. The
motivation behind the development of vision as with other sensory systems is to
differentiate between properties of the environment. With vision it is by detecting
electro-magnetic radiation. Even the lowly single—celled amoeba responds to light,
which acts directly on the cell causing it to move through water [104]. In more

complex animals only specialised cells react to light and are organised in various

95
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structures. Some progressive examples of single-chambered eyes range from the pit
eye, and pinhole eye without a lens and with up to a few thousand light reacting cells
(receptors) to human eyes with millions of receptors and a focusing arrangement of

a lens and cornea [79].

The structure of the eye is a good indication of both the animal’s ecological niche
and types of behaviour it can exhibit [60]. Animals that inhabit flat open envi-
ronments have retinal cells organised in ”visual streaks”, whereas those in arboreal
environments such as forests have cells which are radially symmetrical. Further ex-
amples can be seen by looking at specific species. Beavers have a thickened cornea
allowing them to see underwater. Bats and moles have minute eyes, which are all
they need. Worms just have eye-spots that tell them the difference between light
and darkness. Insects with compound eyes have arrangements of cells which are

excellent at detecting motion, essential for small irritating creatures.

Birds of prey have a small pit called the fovea which has a high concentration of
visual receptors. The pit has the effect of magnifying the image in this area to give
the high resolution needed to spot small animals from afar (typically 10cm objects
at 1500m) [129].

For behaviours that require shape recognition any organism that requires an ade-
quate degree of resolution needs an image focusing system such as a lens and cornea
and a large number of receptors. The optimum distribution of the receptors is graded
from a peak at the centre (fovea) to the periphery. Figure 5.1 shows a variety of
receptor distributions one might envisage, beginning with the type found in humans,

which exhibits the distribution law 1/6, where 6 is the visual angle.

If the distribution was averaged out (figure 5.1b) the resolution would be too low,
whereas if it was uniformly as high as in the fovea (figure 5.1c) there just wouldn’t
be enough space to fit them all in as the number would need to be increased by a
factor of 10,000. The graded distribution also has an advantage over two uniform
areas of low and high distribution (figure 5.1d) as it is then easier to bring a target
into the centre [18].

A practical limitation of a foveal system is that the visual scene is processed serially.
Wouldn’t it be an advantage to process in parallel and attend to the whole scene
at once 7 Well, the outcome in such a system might be that two areas of equal
importance in the scene are detected, resulting in the urge to go in two different

directions at once !
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(a) Foveal distribution (b) Averaged-out distribution

(c) High (d) Uniform low and high distribution

Figure 5.1: Foveal distribution

5.3 Foveal Representation

5.3.1 Uniform v. Non-uniform Representations

The predominant retinal representation in the animal kingdom is graded from a
central point, the fovea, with a high resolution, to the periphery with a low resolu-
tion. In principle, a non-uniform distribution provides a more efficient active vision

sensing environment than the standard uniform representation.

Consider a simple example of a visual scene of, say, ten objects, five which are of
interest and five not. Also, consider two ways of viewing the scene. First, a method
whereby the entire field of view is covered by high resolution. Second, a method
which consists of a low-resolution representation of the field of view along with a
smaller high-resolution window which can be moved around the same area. In order
to evaluate the measure of interest of each object, the uniform method attributes
equal priority of processing to all areas, even to those which turn out not to be of

interest. The latter, non-uniform approach is able to evaluate (perhaps incorrectly)
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each area at a low resolution before further processing at a high resolution in order
of priority according to the evaluation. Ideally the five objects of interest would
be processed first. Even if the low-resolution evaluation is only correct 10% of the
time, the amount of processing with the non-uniform method will still be less than
that of the uniform method which has no method of evaluation. The reason why
the uniform system has to process everything at a high resolution is because it does
not have the same predictive abilities. It would be more expedient to process only
the areas of interest within a scene. However this is not possible without some pre-
processing. The non-uniform method, with its low-resolution periphery, represents
a compromise between only processing areas of interest and processing all areas at a
high resolution. It should be noted, however, that this is only possible where there
is meaningful information to be extracted at a low resolution, such as colour blobs.
If such information is not available then it would be necessary to process all areas at
a high resolution to find the areas of interest. The retinal representation, described
next, is a special case of a non-uniform approach with some interesting properties

particularly suited to overt fixation.

5.3.2 The Foveal Transform

One of the main practical advantages of the retinal distribution is data reduction
[6, 18, 97, 98, 109], in that only a small portion of the space is sampled at a high res-
olution. Other advantages include the provision of a natural interest operator (the
centre of view), and less complex algorithms for tracking [114, 120], as well as the
easy detection of size and rotation changes by vertical and horizontal translations
(provided the object is foveated [7, 97, 109, 101]). The use of the foveal representa-
tion does, of course, require appropriate motor behaviours to put the high resolution
fovea over the areas of interest [6, 7, 18, 97, 98, 99, 114, 120, 109].

The foveal software used in our experiments converts a uniformly sampled image
into a log-polar representation. The image is separated into receptive fields radially
from the centre (see figure 5.2a). The fields nearest the centre are a single pixel and

grow exponentially larger out towards the periphery.

The grey-level (or colour) values at each receptive field are averaged and stored in
a rectangular array called the cortical projection (due to the similarity with the
structure of the visual cortex)(see figure 5.2b). Therefore, the axes of the cortical
projection correspond to the angular position, 8, the angle measured at the centre
from a common origin, and the radial distance, r, of the receptive field from the

centre. Figure 5.3b shows the foveal representation of a face (5.3a). The eyes can be
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Figure 5.2: Each segment in the uniform representation (a) maps to a pixel in the
cortical projection (b) indexed by r (the distance from the centre) and 6 (the angle

measured anti-clockwise from the horizon).

seen in the left-half of the transformed image and the nose and mouth on the right.
Each row of the foveal representation represents a ring of receptive fields with the

top line derived from the centre of the input image, the fovea.

Certain parameters can be manipulated with the software, such as the size of the
input image, the position in the image to use as the fovea and the scale, in order
to get a zooming effect on the foveal representation. The software is from a retina-
like simulation from the Department of Communication, Computer and Systems
Science at the University of Genoa. The original code has been modified to provide a
command-line interface and a library of routines for transforming both grey-level and
colour images into the foveal representation. The modifications enable the cortical
projection to be transformed back to the uniform representation to aid visualisation
of the retinal view, as well as procedures that construct an array of transformation

details that produce the cortical projection with different zoom values (scale). The
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b)

Figure 5.3: a) A face (256 x 256 pixels) and b) its foveal representation (64 x 32
pixels).

result of being able to change the scale of the transformation is that a particular
area or object can, in effect, be segmented from interfering areas by allowing it to
take up the entire field of view for intensive analysis. This is the covert equivalent

of moving closer to an object.

The top half of figure 5.4 shows the foveal representation transformed back to the
uniform representation. Fach square area represents one colour input signal and is
taken as the most prominent colour which falls on that area. There are 32 rings of
square regions each with 64 elements. These can easily be mapped into a rectangular
array which is more suited to processing within a computer program. The array of
the same scene is shown in the bottom half of figure 5.4, where each row represents
one ring. The rings from the fovea to the periphery map to rows from top to
bottom, respectively. This foveal representation of 2,000 pixels signifies a substantial

reduction in the amount of the information that needs to be processed, compared
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Figure 5.4: The foveal representation of a well-known cartoon character

with the standard uniform image of 60,000 pixels covering the same field of view.

5.4 Foveal Fixation Measure

The basis for the motivation of behaviour and the measure of fixation is derived
from a very simple property of the foveal representation, referred to as pizel count

[120]. Figure 5.5 demonstrates this property on a simple circular shape. Figure

S

a) Uniform image b) Foveal image (cortical
projection)

Figure 5.5: Demonstration of the property of maximum pixel count at the fovea.

5.5a shows a standard, uniform image with a white circle in a number of different

positions. Note that wherever the circle is in the image its size is the same, i.e. the
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pixel count is constant. Figure 5.5b is the foveal representation of the same scene
with the foveal point centred on the uniformly sampled image. Now notice what
happens to the circle the further away it is from fovea. At the fovea the circle has a
maximum pixel count (the band of white at the top of the foveal image) which gets
smaller and smaller the further from the centre. Given this property it is possible
to determine when the circle is fixated, with a controlling mechanism that adjusts
position and maximises the pixel count. Incidentally, this method equates to finding

the centroid for an arbitrarily shaped figure.

The scheme can be extended slightly to operate with a specific view of an object,
which equates to a specific pixel count. So the current view would be correct when

the current pixel count is the same as that of the model.
Error = PRE‘F — PPE'RC

This equation simply states that the error signal is the reference pixel count, Prpr,
minus the current, or perceptual, pixel count, Ppgrc. This difference can be used
to drive the fixation to the correct point. The real world example in section 5.5.2
uses this principle, but instead of just counting one binary feature the input function

counts multiple colour features corresponding to a particular object.

5.4.1 Representation

The representation of objects and scene used is simply that of a count, or histogram,
of features relevant to a target. In the current system colour features are used mainly
because they can be processed relatively quickly compared to other types of features.
It is intended, however, that the scheme can be extended to any kind of feature as
the measure is dependent upon the feature count and not the feature type. The
main rationale for a histogram of features is indicated in the later discussion on
pizel count, however this type of simple computation (addition) and representation

(activations) is consistent with what is possible with neurons or groups of neurons.

5.4.2 Input function

In order to encode (compute the pixel histogram of) a target object a training
image of the object is converted into the foveal representation by applying a log-
polar transformation [98]. To avoid the washing-out of colours in an area of pixels,
the method used for deriving a single colour from the uniform image is to take the

modal value of the set of colours as opposed to the average of the area. The RGB
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feature vectors at each pixel in the log-polar image are then adjusted for intensity
by,

/G

~ /G 1 gl/G pl/C

C(r,g,b)

where G is the gamma value of the camera and c is the red, green or blue values.

Within the learning process, performed on the training image, the feature vectors
are clustered according to a k-means clustering process resulting in a reduced set of
vectors (the cluster means) that represent the features specific to the model object.
The histograms for the model and the scene are produced by counting how many
features from the foveal RGB image fall within each cluster, for the set of clusters
representing the target object. For example, at each pixel the RGB vector is adjusted
for intensity and then compared with each of the ten, say, cluster means. If it is
within three standard deviations of a particular distribution it is said to belong to

that cluster and the histogram is incremented appropriately.

5.4.3 Comparator

The philosophy of this system is not to identify objects in a scene but to model
the general behaviour by which an animate system can position itself relative to
a specified object. Such behaviour could, however, be used as a mechanism for

providing an identification system with the best available information.

The behaviour is dependent upon a measure of how close the current view is to that
desired. The measure is derived from a comparison between the model and scene
histograms. Such correlation methods include the sum of squared distances and the

Bhattacharya distance. Results presented in section 5.5.2 use the former method,
W = Z (mli - m2i)2
i=1,n

where 1 and z» are the corresponding bin values from each of the two histograms.

5.4.4 Controller

The output function, or controller, relates the error signal (fixation measure) to the
direction of movement of the artificial animate system in three dimensions. Within
this control-based scheme it is not necessary to compute the specific values of the
position parameters but to change them in such a way that the error signal is min-

imised and a specific input is realised. One possibility is that the automatic control
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of the sensor can be achieved by a simple gradient descent technique. However, as
we shall see in the next chapter a more direct method of moving to the target is

available.

5.5 Fixation Measure Experiments

5.5.1 Expected behaviour of fixation measure

In this section an analysis is made of the idealised behaviour of the error signal in
response to movements of a sensor, with six degrees of freedom, relative to a known

object, again a simple circle. The movements to be analysed are as follows,

Foveal fixation The change of the point of fixation in a grid of points covering the

object.

Distance to object Movement along the line of sight with a constant, central

fixation point.

Object rotation Movement of the sensor around the object retaining a constant

fixation point and distance. Equivalent to rotating the object.

The above categories cover all the movements required for an animate system to
position itself in a learned viewpoint relative to a known object. This type of be-
haviour pervades the animal kingdom irrespective of the level of intelligence, as a
means of providing the animal with the best available information as a basis for

further behaviour or recognition.

Figure 5.7 shows the behaviour of the error signal as a result of the three types of
movement. Figure 5.7a shows the error landscape (minimum shown as a peak) for
the change in fixation point, 5.7c the plot for translation along the line of sight and
5.7e the rotation of the object. In the next section this expected behaviour, for a
simple synthetic object will be compared with the behaviour of more complex, real

world objects in a laboratory environment.

5.5.2 Experimental behaviour of fixation measure

The experimental setup consists of a JVC colour CCD camera with an Ernitec
controllable lens, attached to the end-effector of a PUMAT762 robot arm (see figure
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5.8a). The camera can be controlled as if it were independent of the arm by rotating

it about and translating it along any of its three axes.

The objects used as targets were the Halloween masks as shown in figure 5.8b. These
masks were chosen for a number of reasons. Their relative complexity, arbitrary
shape and 3-dimensional nature makes them more realistic objects for an uncon-
strained environment than, say, a blocksworld scenario. Of course, their distinctive
colours make them more suitable for the current system which is only, at present,
extracting colour information. For each of the movement categories described in
section 5.5.1 the robot was moved accordingly, relative to a target Halloween mask.
At each fixation point the correlation measure from section 5.4.3 (error signal) was
recorded. The fixation grid experiment was equivalent to fixating an even grid of
points over the scene in figure 5.8c. The results are shown in figure 5.7. Due to

practical difficulties of determining a long line of sight along which the camera could
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(c)

Figure 5.8: a) Robot/camera system. b) Target objects. ¢) Experimental scene.

move without violating safety protection, the camera was kept stationary and the
camera zoom varied to emulate changing ’'distance to object’ (see figure 5.7d). The
experimental results compare favourably with the predicted behaviour shown on the
left hand side of figure 5.7, though the fixation grid does show unevenness at the
extremities of the scene, the critical issue being that in each plot there is a gradual
progression to a minimum point which a controller could use to position the camera

appropriately.

5.5.3 Discussion and Conclusion

In this chapter a fixation measure has been presented for use in controlling the
gaze of an artificial, active vision system with respect to multi-featured, complex,
non-synthetic objects. At present the scheme only uses low-level features, analogous
to those in the primary visual cortex, and hence will be corrupted by non-target
objects in the field of view. The next chapter addresses this issue and presents work

(continuing the analogy with the brain) which includes increasingly higher-levels
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of feature complexity that, with a similar feature count measure, will give added

discrimination to the system.

There are many other research projects that endeavour to investigate and model
the type of attentional, recognition behaviour discussed in this chapter. Nordlund
and Uhlin [81] and Tunley and Young [114], are concerned with optic flow and
control to motion features and Weiman and Juday [120] with control to the foveal
pixel count of binary shapes, all for tracking purposes. Hoad and Illingworth [49]
and Pahlavan and Eklundh [84] describe methods for automatic control of stereo
head-camera parameters, the former with open-loop fixation to single colour regions
of interest in static scenes. Spratling and Cipolla [107] describe a robotic, visual
servoing system that has some goals in common with ours, but one which operates
by computing transformations between the error signal and specific motor actions,

on outline contours in static scenes.

Static, open-loop fixation also features in many attention-based systems. Prime ex-
amples of such systems are Westelius [121] (symmetry and edge points), Milanese
[72] (colour and local curvature), Culhane and Tsotsos [28] (intensity and edges),
Rao [94] (image patches) and Grimson et al [40] (colour, edges and depth). The
properties and benefits of the foveal representation have been recognised and dis-
cussed by, among others, Sandini and Dario [98], Tunley and Young [114], Weiman
and Juday [120] and Westelius [121]. Although motion information is not explic-
itly incorporated into our model the importance of control to motion, in animate
systems, for responding to things of potential significance is recognised. Extending
the current system to include control to a maximum pixel count of motion features

would be relatively simple.

In contrast to open-loop fixation systems, the work presented in this chapter rep-
resents a move towards a more realistic system which is able to perform in real,
dynamic environments. The system incorporates some of the features and ideas of
the systems cited above, but extends and brings together the goals to develop an ac-
tive, dynamic, versatile vision system that is able to respond to complex, real-world
objects. The main feature described in this chapter has been the proposed foveal
fixation measure. It provides a means by which the system is able to move to fixate

a known object without having to pre-process the entire scene.
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Visual Fixation Control

6.1 Introduction

The previous three chapters laid the foundations for the visual fixation control sys-
tem presented in this chapter. Described and discussed were Perceptual Control
Theory, foveal scene representation, multi-coloured object encoding and a visual
fixation measure. These are extended and combined to produce a system which is
able to fixate and track complex objects [134]. The fixation measure is extended
to include higher levels of abstraction which gives information more specific to the

target allowing segmentation from surrounding, distracting regions.

Described first are two essential parts of a control system, the input, or perceptual,
signal and the output which results in the input being controlled. The first experi-
ments show the behaviour of the control system when fixating in real-time to a real
object with detailed reference to the input and output signals. The model acqui-
sition procedure for multi-level control is also described followed by some relevant

experiments to complex multi-coloured objects.

6.2 Fixation input signal

In succeeding sections we describe how particular regions of interest in a scene are
segmented from the background. As described in the previous chapter, each row
and column of the pixels, in the foveal distribution, that make up the region of
interest represent the direction and magnitude from the centre of the field of view.

From this information we are able to derive a fixation signal which can be used

69
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as the input to a standard PCT control system. Sparks [106] reports that animal
visual fixation works in a similar manner. Populations of activated cells in a neural
map in the superior colliculus define the direction and magnitude of eye movements
[101, 100]. So, instead of using the measure from the previous chapter, which only
gave a correlation value but no information about where to move, we can control

a variable which more directly represents how to get to the fixation position. This

(b)

(c) (d)

Figure 6.1: A simple, single-level fixation control simulation. Images (¢) and (d) are

the foveal representations of the initial (a) and final (b) uniform scenes, respectively.

fixation signal is derived by simply taking the mean of all the position vectors within
the region of interest. Figure 6.1c shows the foveal representation of figure 6.1a where
the small white blob corresponds to the white circle in 6.1a. The dark line in 6.1a
from the central cross hair is a visual representation of the fixation input signal
derived from the mean of the position vectors of the blob. Figure 6.1b and d shows
the end result of control of the fixation signal. The cross hair tracker is now centred
on the target circle. Notice in 6.1d that the circle now corresponds to a white band
in the foveal view. What has happened is that the tracker has moved until all the
position vectors are in equilibrium (their average is zero) resulting in the fixation on

the centroid of the region.
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The above effect of fixation on the centroid occurs not only in regular geometric
figures but also for irregular shapes as shown in figure 6.2. The image in figure 6.2a
contains a number of irregular coloured shapes. The foveal view when fixated on the

centroid of each object is shown in figure 6.2b. One slight problem with the foveal

()

Figure 6.2: Simple colour fixation. a) The image of simple coloured figures, b) The

foveal view when fixated on the figures, clockwise from top left.

representation used is that there is a blind spot in the centre of the image. This
is shown in figure 6.3 where the distribution plot of the number of pixels from the
centre of the uniformly sampled image against the representation meets the y-axis
at approximately 8 pixels. Although this is a small proportion of the scene as a
whole the practical result is that there will be some small oscillations around the
centre as the input signal jumps directly from 0 to 8 pixels. Figure 6.3b shows this
area expanded and the proposed resolution which is to re-represent this area as a

gradual decline from 10 pixels to zero.
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Figure 6.3: Distribution of the foveal representation showing the blind spot.

6.3 Image and Robot output

We have developed software which implements tracking control off-line in synthetic
and real images, on-line in real, live scenes with a fixed viewpoint as well as with the
mobile PUMA700 robot arm and camera system. In the live, fixed view experiments
the movement of the robot is represented by a moving cross-hair. The input which
is controlled is the size of the offset from the centre view to the region of interest,
with the reference signal being zero. The region of interest is the segmented area of
features which belong to the target. As the reference signal is zero, the error signal

is the same as the input signal,

where Z are the position vectors of the n segmented features with respect to the

centre of the current field of view, in Cartesian coordinates.

The output signal is the direction and wvelocity of the movement towards the target,
the velocity being a function of the error signal (see figure 6.4). The direction is
defined by the unit vector of the error signal (same as input) and the velocity for,

image based output, is,

v=gp°
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Figure 6.4: The output velocity as a function of the pixel offset. A limitation is

introduced to emulate a real physical system.

where ¢ is the gain and p is the modulus of the error signal in pixels. The output is
limited to a maximum of 1000 pixels per second (see figure 6.4). For the output of

the robot arm the velocity is,

v =g

where 0 is the angle of rotation through which the camera must be turned to fixate

the target.

Therefor, as the sensor centre gets closer to the target the velocity decreases until
fixation, when the error will be zero and so, therefore, the velocity. A practical
result of relating the error signal to the velocity, in this way, avoids oscillations and

jerky movements as fixation is reached.

With the real-time robot controller it is possible to execute commands defining the
direction and velocity of movement required. The image processing is performed in
parallel with the robot movements and so it is not necessary to wait for a move-
ment to cease before updating the error signal. Also commands can be sent to the
controller while the robot is in motion which override all previous commands. In
this way we are able to continually monitor and control the fixation signal. Control
within fixed views is handled in the same way with the exception that the movement
(of the robot simulating cursor) in each iteration is computed discretely from the

current desired velocity and the length of time of each iteration.
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6.4 Single-level Control

Single-level control is sufficient for tracking simple lights or areas in grey-level or
colour scenes. Areas within an image of a particular grey-level range (such as the
brightest) can easily be segmented, from which the fixation signal of a blob can be
derived. Similarly for colour regions, particular objects can be delimited by defining
the upper and lower thresholds for the red, green and blue values. Figures 6.1 and
6.2 show examples of tracking simple regions in simulated images. Experiments in
tracking to simple lights and single-coloured objects have been performed success-

fully in real-time with the robot.

Figure 6.5: The yellow line shows the trajectory of the red bowl as it is tracked by

the control system.

Figure 6.5 shows a real scene of a red bowl on a blue background. The yellow
line shows the trajectory of the bowl starting from the centre of the image. The
bowl was moved rapidly three times (up to the left, to the right and down to the
right) with a pause between each movement and then slowly to the left. The signals
for the pixel distance to the target (input signal) and the velocity of movement
(in units of 10 pixels per second) are shown in figure 6.6a, for the duration of the

tracking. The three larger peaks correspond to the rapid movements and the smaller
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to the slow movement. The second large peak is shown in more detail in figure
6.6b. The circles show the points on each iteration of the processing loop indicating
a sampling rate of about 20 frames per second. It can be seen that the system
rapidly detects the movement of the target and the output immediately goes to its
maximum of 1000 pixels per second. The position of the tracking cursor, as indicated
by the input signal, also moves rapidly to fixate the target, the whole process taking
approximately 250 milliseconds. If the robot arm were actually moved the behaviour
would be similar except that the time it took to reach its output velocity would
depend upon the physical system itself. The smaller peak is shown in more detail
in figure 6.7. Although there is always some residual error it is kept at a minimum

by varying the velocity output to maintain tracking of the moving object.

6.5 Object model representation and acquisition

A couple of problems arise when extending tracking control to multi-coloured ob-

jects:

e Determining the RGB values of the different colours which belong to a target

object and,

¢ distinguishing between areas of the same colour which belong to different ob-

jects (or the background)

The first problem is partly addressed by the method of model acquisition employed.
The target object is isolated from its surroundings and the RGB vectors at each
pixel are recorded and clustered (for the purposes computational efficiency) into a
small number of ideal vectors (10-20) which are said to represent the input vector

weights for the object when it is assumed to be under perfect control.

Input vectors at higher, additional levels are derived by examining a 3x3 area of the
preceding level. Within this area the feature types are counted giving an input vector
to the next level which represents the number of each of the features present (see
figure 6.8). This process is repeated for each subsequent level. Adding these higher
levels partly solves the second problem as the input vectors will be more specific to

the target object than to others.
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Figure 6.6: The pixel offset and output velocity for a typical tracking experiment.
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Figure 6.7: Expanded area from figure 6.6.

6.6 Multi-level Control

Figure 6.9 shows a block diagram of a multi-level control system. Level 0 processes
the basic RGB vectors and higher-levels (only one is shown) the vectors from the
3x3 pixel area. The input which is controlled at the highest level is the perception
of the direction and magnitude of movement to the target. The intermediate, colour
processing levels, it should be noted, are not actually controlling variables, but are
assumed to deal with uncontrolled perceptions with previously organised input func-
tions. In the current case of fixation control we are more concerned with the location
of perceptions than with their values. In the perception types images (see figure 6.9)
the non-white pixels show the areas of interest which have become activated for the
particular target. The pixels are colour-coded according to the feature type, their
magnitude indicated in the signals arrays. In this particular example the target is
the blue face on the bottom-right of the main image The first of the perception types
images shows many features activated spread over the scene. This indicates that,
at this level, there are many features in common between the target and non-target
areas. The second perception types image shows only a small cluster of activated
features indicating that at this higher-level the target does not have any features
in common with other areas. Segmentation of target dependent features allows us

to selectively fixate the target by computing the fixation vector from the position
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Figure 6.8: On the left is the input function for the lowest level, the RGB image.
On the right the higher levels derived from a 3x3 pixel region of its preceding level.

vectors of the features.

Some preliminary results of the multi-level control system are shown in figure 6.10.
Each row of images show the results of fixation for each of the Halloween mask
targets, clockwise from top left. The columns, from left to right, show the results
using levels 0, 1 and 2. In each case the starting position is the centre of the image
and the cross-hair indicates the end position (which should be the nose of each face)

with the dark line showing the course of fixation.

From the left column it can be seen that control, solely with level 0, is poor. Al-
though fixation is made towards the correct targets, interference from background
and extraneous signals adversely affect the fixation signal. Control which includes
level 1 (centre column) is greatly improved, with fixation terminating, correctly, at
the centre of the target face each time. Including another level (level 2, right col-
umn) does not seem to improve control further and in fact seems slightly worse.
However, this is probably more to do with the fact that much of the signal is lost at
this level, rather than with higher levels not being of benefit. Given the instability
of the input signal at higher levels we limit the hierarchy to the lower two feature

processing levels.
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The outputs from these levels, of the magnitude and direction to the target, define

the input to the highest level (fixation) control system.
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Figure 6.10: Multi-level control. Each row shows the results of fixation control to

each of the faces (clockwise from top left) at levels 0, 1 and 2.
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6.7 Conclusions

The fixation system presented in this chapter performs well in real-time on simple
lights and single coloured figures in synthetic and real scenes. Results have also been
presented of some preliminary work concerning fixation to more complex, multi-
coloured objects. Control improves with added levels in a hierarchy. Each level
embodies signals which are more specific to the target object enabling the target to
be more easily distinguished from its surroundings. The main problem is deriving
the input functions and their weights. In the present scheme the signals at the
higher levels are rather impoverished with much of the lower level inputs being
lost sometimes resulting in erratic control. Future work would benefit from further

investigation into the reorganisation and development of the input functions.

We have presented some preliminary results in off-line images which show that good
fixation control, to complex objects, can be achieved with signals based only upon
colour. Control may be improved further by including feature dimensions such as

edges, motion and texture to add even greater discrimination.
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Chapter 7

An Integrated Vision System

7.1 Introduction

In this part of the thesis we describe the methodology and goals for building generic
active vision systems with the general aim of interpreting dynamic scenes and ac-
tively responding to events. This requires the integration of diverse visual modules.
The procedure and architecture we use follows the principles, structure and aims of
the recent VAP project [27]. In this chapter we describe the VAP approach along
with the particular architecture of our experimental integrated active vision system,

and outline the corresponding visual modules used.

7.2 VAP Objectives

Research in computer vision has focused on developing procedures for solving dis-
crete problems for extracting information about visual scenes [32, 54, 55]. The
reasons for this tendency is partly due to people’s proclivity to break a complex
problems into smaller chunks, and partly due to the highly influential representa-
tional approach developed by David Marr [67]. The basic theory consisted of ap-
plying (discrete) visual algorithms on single images which extracted different types
of information such as, edges, shape and texture. The results were placed on what
Marr referred to as the 2 1/2 D sketch which was to be used as the basis for the

construction of 3D representation of the scene and its constituents.

More recent research [2, 4, 8, 108] has argued that the complexity of visual prob-

lems can be significantly reduced by controlling both the sensor and the processing
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resources, the hypothesis being that the spatio-temporal context plays a crucial role
in predicting both what is going to happen next and where it is going to happen,
enabling processing and sensor position to be first applied according expectations
[71]. Arising from this paradigm shift towards visual integration and control are the
following set of problems which need to be overcome, and which, broadly, form the
basis of the objectives of the VAP project:

1. Control and scheduling of discrete knowledge sources.
2. Optimisation of knowledge source parameters.

3. Sensor control.

4. Control of processing resources.

5. Scene model maintenance.

6. Evaluation of expectations in dynamic scenes.

Some preliminary work has been done elsewhere for the control and scheduling of
knowledge sources [30, 44, 61] and for the optimisation of parameters [95] and will

not be addressed here. We do, however, address the remaining four topics.

The control of the sensor and processing gives rise to new conceptual problems in
addition to the practical problems. As the sensor is mobile it becomes necessary
not only to maintain a scene model in terms of the contents of the world of interest
outside the current field of view but also in terms of the accurate location of those
contents with respect to the sensor. The control of the sensor position depends
upon the relationship between current and future events. The autonomous control
of sensor and processing requires some in-built knowledge of such relationships.
We propose to model such spatio-temporal events linguistically, by constructing

grammars of the possible sequences of temporal scene events.

7.3 VAP Architecture

Figure 7.1 depicts the basic modules of the VAP vision system architecture. Pre-
viously defined models of objects are stored in the object database in terms of
the relevant knowledge sources (colour, texture, geometric properties). The scene

description database contains those objects from the database of possible objects
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which are detected in the current scene. The information includes their location in

a camera-independent coordinate frame, ie. their world 3D position.

The scene description reflects our knowledge about the environment at a given time
and is continually updated according to the dynamic nature of the scene. The cen-
tral controller governs the overall operation of the system by taking expectations
from the model of scene evolution and issuing instructions to the hypotheses
manager, knowledge sources and camera controller. The hypotheses manager
combines the bottom-up information derived from the current scene, via the knowl-
edge sources, with the top-down spatio-temporal expectations to assign a priority

to the possibilities for both the camera look position and the current scene models.

7.4 Experimental System Architecture

The structure of the experimental vision system which is the subject of this part of
the thesis is shown in figure 7.2. Incoming images are analysed for regions of interest
defined by changes which have taken place in the environment, denoting objects
which have been placed or removed. The outlines of all objects are extracted from
the regions of interest and, after adjustment for camera pose, are matched against
the object database. The scene description is then either updated or confirmed.
According to the context, as defined by the grammatical model of scene evolution,
the sensor is re-positioned and the sequence of matching through the object database
is prioritised according to the probabilities assigned to the expected objects. Each
of these modules are described in detail in the following chapters with the exception

of two, which we briefly describe now.

7.5 Regions of Interest

Regions of interest (see figure 7.3b) are determined by comparison of the current
image with a background image of a static tabletop scene. Any areas which show a
significant chromatic difference [69] are likely to represent new objects or events and
are, therefore, deemed interesting. The chromatic differencing results in a binary
image indicating those pixels which have changed from the base image, according
to the chosen threshold parameters. By connected components analysis the pixels
are grouped together into separate, contiguous areas. Rectangular regions are then

derived by finding the boundaries of the contiguous areas. Any regions which are
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less than 100 pixels square are rejected as being too small to be interesting, most

likely due to noise.

7.6 Cylindrical Object Recognition

The object recognition approach used in the present system has been reported in
detail elsewhere [127]. It uses a dedicated recognition engine for each type of object
that can be found in a breakfast scenario. In particular we can cope with plates,
saucers, sugar bowls, cups and milk jugs. The recognition scheme assumes some
prior knowledge and constraints. All objects must be placed on a common, flat
ground plane. The transformation between the camera coordinate system and the
ground plane coordinate system must be known (established through calibration).

The recognition procedure adheres to the processing steps shown in figure 7.3.

Within each rectangular region which is output from the change detection stage the
edges are extracted, by a standard Canny detector, and linked to form lines within
the regions which represent the outline of any objects present. For each stored
model in the database of known objects the model is transformed according to the
pose estimation of the camera resulting in a list of pixels, in the image coordinate
system, that would (exist) if the object were actually in the region in question. We
then have two sets of pixels, one derived from the stored model. A match value is
determined by summing the Euclidean image distances from each model pixel to the
closest image pixel. The lower the value the better the match. The model which
produces the lowest value which is below an experimentally derived threshold (see
chapter 9) is accepted as the identification of the object. If the stored database is
large, this process represents a major processing bottleneck, as it may be necessary
to search through, and attempt to match, all the models before the correct one is
found. In a later chapter we will see how this is overcome by prioritising the search

according to predictions which rely upon a model of scene evolution.

7.7 Experimental set-up

All our experiments were carried out with a COSMICAR/PENTAX 25mm lens
on a JVC TKI1070E camera attached to a PUMAT700 robot arm (figure 7.4). All

processing was performed on a Silicon Graphics Power Challenge machine.

The images were captured with a Sirius image grabber. All software was written in
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Figure 7.4: Robot/camera system

C++ making extensive use of the AMMA library classes developed at the Centre

for Vision, Speech and Signal Processing.

7.8 Summary

In this chapter we have described the overall architecture for an integrated Active
Vision System which is the goal of this research. Also described, briefly, were some
of the modules, such as change detection and object recognition, we use which were
the subject of research by others. We are not committed to using these particular
techniques but envisage substituting different modules for the purposes of evaluation

and comparison.

The remaining chapters of this part of the thesis fill in the missing parts from the
whole resulting in a working, interactive vision system. The next chapter provides
a solution to the enduring problem of camera calibration, necessary for 3D object
recognition. Demonstrated in chapter 9 is the benefit of accurate calibration data for
maintaining the position of an object with a moving camera. Chapter 10 describes
the full system with particular reference to the modelling of the temporal evolution

of a scene.
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Camera Calibration

8.1 Introduction

One of the major goals of Computer Vision is akin to a surveying task of measuring
the 3D position of objects by optical means. The way this is done can generally
be described as the task of equating the position of objects in acquired images with
their 3D world coordinates. If a stereo vision setup is used one solution is to find the
points in each image pair which correspond to the object and compute the object
position, by triangulation, from the known orientation of the two cameras. However,
in the situation which we are examining here, of a single camera, the triangulation
method is not available. If only a single camera is to be used the accuracy of the
recovered 3D values depends upon the degree to which the parameters of the camera
and its relationship to the world are known. It is necessary to determine, therefore,
to a high degree of accuracy the projective transformation between the image and
the world, which requires the intrinsic and extrinsic parameters of the camera. The
intrinsic parameters we are concerned with are the focal length, the image centre
and the radial lens distortion factor. The extrinsic parameters are the rotation and
translation values which define the relationship of the camera coordinate system with
respect to that of the world. The process by which these parameters are derived is

known as camera calibration.

A particular goal of ours is to be able to maintain the known world position of an
object even though the camera pose changes, dramatically and arbitrarily within
a working area. This requires calibration data which is reliable enough to predict,
from a new view, the object image position to within a few pixels. Any more than

that and we run the risk of attempting to match our models against erroneous or
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background object edges.

Calibration has been performed reliably from static viewpoints allowing accurate
estimation of 3D world coordinates [43, 47, 56, 58, 112]. However, problems arise
when the camera pose is changed. Due to the large number of free parameters com-
pared to the number of constraints, the calibration parameters are biased to fit the
data for the view from which they were determined. In our experience the projection
errors based on camera parameters established from a single view increase rapidly
as a function of the distance of the viewpoint from that at which the calibration
was performed. Re-calibration at different views gives unstable estimates for both
intrinsic and extrinsic parameters. In fact the estimates are so unstable it makes
little sense to consider these parameters ’intrinsic’. The instabilities have often been
attributed to changing environmental conditions (e.g. temperature) or mechanical
non-rigidity of the camera system. We present a new method for camera calibration
which overcomes the over-fitting problem and yields very stable estimates of the

camera parameters.

The standard way to increase the precision of calibration from a single view is,
either to use a chart which covers the whole field of view, or to use cleverly designed
3D objects. With our procedure only a simple planar chart is required and we are
able to determine parameters which can be used at a later date or perform the
calibration experiments in conjunction with 3D recognition experiments such as the
maintenance of scene models. We extend Tsai’s [112] calibration method to optimise
the parameters over many views resulting in values which rapidly converge during
the procedure and remain consistent over time. The multi-view method requires

and exploits the knowledge of the motion of the camera system.

Our basic strategy can be summarised as follows,

1. A robot/camera system is moved to a large number of positions with its line

of sight oriented roughly towards a calibration chart.
2. At each pose the image positions of feature points on the chart are detected.

3. The re-projected positions of the points are computed from estimated values

of the camera parameters and compared with the detected centres.

4. The total error over all views is minimised to obtain the optimal values of the

intrinsic parameters.

In the reported experiments the intrinsic parameters converge to stable and consis-

tent values. The focal lengths, for example, determined from many executions of the
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procedure agree to 0.28 mm. The resulting calibration data is tested successfully in

poses not used in the initial procedure.

We present a series of experiments which examine the behaviour of the derived
values of the camera parameters in a variety of situations ranging from a single set
of parameters at a static view to multiple sets of parameters at multiple camera
poses. We conclude that the best way of determining the effective parameters is to
optimise a single set of the intrinsic and extrinsic parameters over multiple views
of the scene. In this chapter we first describe the camera model assumed sufficient
for our purposes, some of the issues in camera calibration and optimisation and the
chart detection technique. Section 8.5 outlines the experiments performed. The

results are also presented in section 8.5 and the conclusions discussed in section 8.6.

8.2 Camera Model

The camera model we employ is the basic pinhole model with radial lens distortion
as used by Tsai [112]. The goal of camera calibration is to recover the projective
transformation, such that 2D image points can be converted to their 3D world
counterparts, and vice versa. Four coordinate systems need to be determined in
order to compute the transformation; in terms of the world, the camera, the camera
sensor plane and the image. Three sets of data are required, the extrinsic and

intrinsic parameters and details concerning the camera sensor.

The extrinsic parameters define the position and orientation of the camera with
respect to the world, and comprise the rotation matrix (R) and the translation
vector (T), such that a point in world coordinates (z., yw, 2w) can be defined in

terms of its corresponding camera point (x., Y., 2c) as,

Le Lo
Ye =R Yw +T
Ze Zw

The 3 x 3 rotation matrix can also be expressed as three parameters of rotation, the
roll, pitch and yaw angles around the z, y, and x axes, respectively [38]. With the
three elements of the translation vector T}, T, and T, gives six extrinsic parameters
in the calibration implementation used in our procedure [124]. Transformation with
the extrinsic parameters give the coordinates of a world point in terms of the camera
coordinate system with the origin at the optical centre and the z axis along the

camera’s optical axis.
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There are many possible intrinsic parameters, including different types of lens dis-
tortion, which could be used in the model. For compatibility with other research
and available software [124] we constrain ourselves to four intrinsic parameters, the
focal length, f, the image centre C, and C, and a radial lens distortion factor, &,
which are required for the remaining stages. The next step is to convert from the

camera coordinate system to the plane of the CCD sensor.

X, = f¥ and
Ze
Ye

9
Ze

S
|

where X, and Y, are the coordinates on the undistorted (ideal) sensor plane.

Due to geometric lens distortion the sensor coordinates require adjustment with the

lens distortion factor giving the true sensor position of the point,

X
Xg = u2 and
(1+ rp?)
Y,
Yo = “ o
(1+ rp?)

where p = /X2 + Y2

Finally, the image point is derived by,

X, = d;lesgg—i-C'a7 and
Y; = d;'Y;+C,,

where d, and d, are the distances between the centres of the sensor elements and
sz 1s a scaling factor compensating for any uncertainty in the timing of the start
of the image acquisition. These three camera sensor parameters are assumed to be
constant, the values of d, and d,, are given by the camera manufacturer and, for our

present purposes, s, is taken as 1.0.

8.3 Calibration and Optimisation

Camera calibration involves finding the optimal values for the parameters which cor-
respond to the minimum error between points in an image observed from the world

and points re-projected into the image plane from the projective transformation and
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the known world coordinates of those points. The calibrated camera parameters are
unlikely to be the same as those specified by the manufacturer of the camera. The
parameters we derive are the effective parameters of the pin-hole camera model as
opposed to the true parameters of a thick-lens camera model. As images are 2-
dimensional any point within an image translates to a line in the world coordinate
system. Therefore, there is not a one-to-one correspondence between image and
world points. To overcome this problem we constrain all world points and objects
to lay on, or to be related to, a known common plane. The intersection of the line

with this plane then gives us a point which corresponds to the image point.

The most basic calibration situation comprises a single, static view of a set of points
lying on a common plane (coplanar). However, there could be many variations of the
calibration parameters which satisfy a specific view giving an acceptable re-projected
error. If the world points are coplanar there can, particularly, be considerable am-
biguity in the estimated f,T, values. This can be seen in table 8.1, section 8.5.2,
where the values of the f and T, parameters vary quite considerably depending
upon the circumstance. Note, however, that the ratio of the values remains constant
indicating that a parameter minimum has been found for that particular view, but

which is unlikely to generalise to different views.

To some degree the f, T, ambiguity can be alleviated by using non-coplanar calibra-
tion points [112] (which requires some mechanism for moving the calibration points
in space or for correlating points on different planes) and the intrinsic parameter
bias can be alleviated by calibration from multiple poses [93]. We draw on these two
concepts and derive a procedure which involves taking a series of views of a fixed
calibration chart. The views are defined by known camera movements. All views are
used jointly to determine the camera intrinsic parameters and the initial extrinsic
parameters. By moving the camera in different planes (instead of the calibration
points) and calibrating at a large number of positions which cover the desired work-
ing environment of the robot/camera system, we obtain very stable estimates of the

calibration parameters.

The approach we use, however, is not the simple averaging of the values of the
intrinsic parameters computed at the different views. Our goal is to derive values
which result in a small error between the predicted and actual positions of objects
when projected into the image. Averaging may or may not achieve this. The value
of our approach is that we directly minimise the quantity in which we are interested,

the re-projected error.

Along with Tsai’s [112] camera model we also employ his calibration algorithm using
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Figure 8.1: Chart detection algorithm

Willson’s [124] implementation. There are five stages of parameter optimisation.
The purpose of the first four are to derive parameters which are close to a solution
in preparation for fine-tuning by the fifth and final stage which is the Levenberg-
Marquardt optimisation algorithm. We use the full five stages only for the initial
pose in our experiments. Subsequently, for pre-optimisation estimates, we use the
same intrinsic parameters and derive the extrinsic parameter estimates by chaining
the initial values with the known movements of the camera. As these estimates are
derived from the initial optimised values they are sufficiently close to the solution

that we then dispense with the first four optimisation stages and only use the fifth.

8.4 Chart Detection

Successful camera calibration relies heavily on the accurate and consistent detection,
in images, of precisely known world points. Points extracted from the image of
conventional objects are notoriously unreliable. The object edges extracted from

images at different poses may actually refer to different world points. There is
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Figure 8.2: Comparison of centre of gravity with true centre of square. The trapezoid
is the outline of a square seen in perspective. The true centre is shown by the
intersection of lines (dashed) through the corners of the square, whereas the centre

of gravity is represented by the cross.

also the added problem of finding the correspondence between points in different
images. To overcome these ambiguities we use as world registration marker points
on a calibration chart. In addition we apply a fast and robust technique for the
accurate detection of the centres of the squares of the calibration chart. The chart
detection technique is founded on the premise that the image gradient for pixels on
the chart will be highest locally and close to the global maximum. The resulting
edge strings are closed, compact and convex. The main stages of the method involve
the processing of local image gradients, the feature extraction of the centre of gravity
of each square and the linking of possible nodes to segment each individual chart.
Figure 8.1 shows a block diagram of the entire process and more details can be found
in Soh et al [105].

The types of charts used here consist of either square or circular elements. Both
the number and size of the elements can vary. One possible source of error with
the method described above of detection the centre of gravity of each chart element
is that the centre of gravity may not actually be the centre of the chart element,
depending upon the angle of incidence. Figure 8.2 shows the outline of one of the
square chart elements seen in perspective. The centre of gravity is the point which
is equidistant from the four corners. Whereas, the actual centre of the square is
the intersection of the diagonals. For this reason we also investigate the use of
the detection of the corners of the chart elements. The corners are defined by the

intersections of lines which are fitted to the edges of the squares.
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Figure 8.3: Example view of calibration chart

8.5 Calibration Experiments and Results

The reliability of the parameters of the projective transformation can be determined
by examining the re-projected error. Two sets of pixel values for the chart elements
can be derived. One set is constituted by the values resulting from the chart detec-
tion process. From these values, along with the known dimensions of the chart, the
camera parameters are computed. The other set can be obtained by re-computing
the (predicted) image positions from the camera parameters and the known dimen-
sions of the chart. The re-projected error is the mean of the Euclidean distances

between the pixel values for the corresponding points in each set.

8.5.1 Experimental procedure

In the multi-view experiments, the robot/camera system was placed, every 200 mm,
in a 800x800x600 virtual 3D grid, less the poses that were unreachable or violated
the camera protection protocols. The direction of sight of the camera was always
oriented towards a fixed 5x5 calibration chart (figure 8.3). It was ensured, however,
that the chart was off-centre in the image so that the lens distortion factor would have
an effect within the camera model equations, otherwise it may not be optimised. The
camera was placed in 50 different poses for the multi-view optimisation procedure.
The resulting camera parameters were then tested in 60 other poses, half of which

were outside the initial 3D grid and half inside.

In order to test the temporal stability of the derived intrinsic parameters the ex-
periments were repeated several times a day over the period of two weeks. In case

the temperature of the hardware had any effect on the results the experiments were
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Corners | Focal length (mm) Tz (mm) f/ Tz Ratio Error
Chart Type | Mean o Mean o Mean o Mean o
4x4 20 14.54 4.38 1782.0 | 480.16 | 0.0081 | 0.000227 | 0.267 | 0.011
4x4 40 22.46 0.81 2653.9 | 86.33 | 0.0085 | 0.000033 | 0.295 | 0.007
5x5 40 20.91 0.71 2515.5 | 86.00 | 0.0083 | 0.000023 | 0.276 | 0.007
8x8 20 21.87 0.82 2610.1 | 96.17 | 0.0084 | 0.000023 | 0.206 | 0.009
8x8 40 20.48 0.39 2564.5 | 49.20 | 0.0080 | 0.000047 | 0.248 | 0.007
Circles Focal length (mm) Tz (mm) f/Tz Ratio Error
Chart Type | Mean o Mean o Mean o Mean o
4x4 20 53.28 25.47 6030.3 | 2813.92 | 0.0088 | 0.000103 | 0.099 | 0.010
4x4 40 20.29 0.66 2426.9 | 73.16 | 0.0084 | 0.000023 | 0.085 | 0.008
5x5 40 20.58 0.30 2475.0 30.75 | 0.0083 | 0.000017 | 0.090 | 0.004
8x8 20 20.19 0.74 2438.1 78.31 0.0083 | 0.000055 | 0.129 | 0.004
8x8 40 21.17 0.11 2648.5 | 13.12 | 0.0080 | 0.000007 | 0.151 | 0.003

Table 8.1: Results of f and T, for 100 calibrations from the same view.

carried out first thing in the morning and after the equipment had been left powered

up all day.

8.5.2 Single-view calibration
Chart Type

An important relationship between calibration parameters is that between the focal
length, f and the third element of the translation vector, T,. As mentioned in section
8.4 there are different types and sizes of charts that can be used for calibration
purposes. In our first experiment we fixed the camera in one position with the line
of sight of the camera at an angle of approximately 45° to the plane of the table and
performed the calibration in order to determine the effect of the different charts on
the derived values for f, T, and the f/T, relationship. The calibration was repeated

100 times for each chart and the values of the derived focal length and T, recorded.

Table 8.1 shows the results for some statistics of the focal length and T, as derived
from Tsai’s [112] five stage calibration process. The two tables show the results
for the extraction of corners from square charts and for the centres of gravity from

circular charts. The chart type indicates the number of elements in a chart and
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the dimension between elements, in millimetres. For example, the chart type 8x8
20 means a chart consisting of an 8x8 grid of elements (64 in total), the centres of

which are 20 mm apart.

There are a number of things to notice,

the statistics, o, improves with the number and size of the chart elements

e there is a large difference in the mean values of the focal length for the different
charts indicating significant instability in determining the values from a single

view

e the f/T, ratio is constant over all situations. The reason for this is that from
the single pose there is a wide range of values of f, along with its appropriately
scaled dependent variable T, which can satisfy the minimisation process. In
other words, there are many local minima for the values of the camera param-

eters which will produce an equally low error.

e the mean re-projected error is fairly constant across chart types, approximately

0.25 pixels for corners and 0.11 for circles.

To summarise, in our experience the results obtained from single-view calibration
are neither stable nor repeatable. Considering that the re-projected error is stable,
we feel there is strong evidence for the conjecture that the camera parameters are
biased to fit the extracted coordinate data for that particular view. If the view was

slightly different there may be a large effect on the parameters.

Scale of chart and intrinsic parameters

It has been reported elsewhere that the stability and precision of derived parameters
depends upon the size of the chart within the image. The usual conclusion is that
the reliability of the parameters improves as the size of the the chart increases.
To investigate this claim we carried out an experiment where we translated the
camera, along its line of sight every 100 mm in a range of 1800 mm. The size of
the chart, therefore, decreased with increasing distance from the chart. At each
pose calibration was performed 50 times and the mean and standard deviation of
the derived focal length were recorded. Figure 8.4 shows the mean and standard
deviation plotted as a function of distance from the starting point. Experiments

were performed for different size charts as well as for the corners of square elements
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Figure 8.4: Focal length, f, and standard deviation, o, plotted against scale (distance

from chart). There are two sets of three lines in each graph. Each set represents
f+o,f and f — o, from top to bottom. At each pose (scale) 50 images were taken

and the calibration parameters derived from each image. The mean and standard

deviation of f was computed for the 50 measurements. This process was carried out

for two different sizes of chart elements, as represented by the two sets. The upper

graph shows the results for detected corners of square chart elements and the lower
for circular chart elements.
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and the centre of gravity of circles. Two points are clear from the graphs. One, that
the instability of the mean focal length value increases as a function of scale. The
second, that the variance of derived values also increases. These results confirm the
earlier claim and suggest that the best results can be obtained when the chart covers
the entire field of view. However, it is often both inconvenient and impractical for
the chart to fill the scene for one, let alone multiple views and we wish to move
towards the situation where the chart holds a less conspicuous position in the scene.

The remaining experiments address this issue in more detail.

Single-view generalisation

We have seen how the calibration parameters are affected by the chart size and
type and that reliability improves with the size and number of chart elements. This
knowledge, so far only applies to static, single views of the camera. We would
like to be able to obtain calibration information that would be appropriate for the
same scene but from different poses. This set of experiments investigates how the

calibration data, taken from a single view generalises to other views.

For the grid of poses described in section 8.5.1 the calibration data was obtained
for the initial pose only. The robot arm was, subsequently, moved to 30 of the
other poses. At each pose the extrinsic parameters were computed from those of
the initial pose and the known relative movements of the robot. Along with the
intrinsic parameters from the initial pose the re-projected error was calculated at
the subsequent poses in order to determine how well the single view calibration data

generalises to different poses.

As can be seen from figure 8.5 different types and sizes of charts were tested and
the re-projected error was plotted against the distance from the initial pose. To
test the repeatability of the results the same experiment was performed twice, in
figure 8.5a and b. Although, a general trend of size of error to distance can be
seen the more pertinent result is the size of the errors. Although the bigger charts
produce smaller errors they are still unacceptably large and could be anything up to
40 pixels. Furthermore, the results of the two executions of the experiment were not
consistent, showing very different values. For example, in the first experiment (8.5a)
the small 8x8 circles chart has smaller errors than the large 8x8 chart, a situation
which is reversed in the second experiment (8.5b) and in the second experiment the
errors from the small 4x4 circles are so large as to be off the graph. Our goal is to

develop a technique which not only produces relatively small errors but errors that
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Figure 8.5: Re-projected error of single view calibration applied to new views. Cor-

ners of square chart elements and centres of gravity of circle chart elements are used

as features.
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have little variation over the volume of space to be calibrated and that can be shown

to be repeatable.

8.5.3 Multi-view calibration

The purpose of the multi-view calibration experiments is to derive a set of intrinsic
parameters which can be used at any pose of the camera and which produce a
consistently and acceptably low re-projected error. In these experiments we optimise
the camera parameters by minimising the error not just for one single view or for
many independent views, but over many views simultaneously. The rationale being
that we are directly minimising the goal quantity, the error over multiple views, and
that the computed parameters will converge to general values which will produce a

similar minimum error value from any view.

The main elements of the procedure for the multi-view calibration experiments are

as follows;

e At each pose an image of the chart scene (figure 8.3) was taken

e Within the image the corners of the chart elements were detected using Soh

et al’s [105] robust chart detection system, and recorded.

e At the first position, initial values for the extrinsic and intrinsic parameters
were derived from Willson’s [124] implementation of Tsai’s [112] calibration

algorithm.

e At each subsequent position the parameters were optimised to reduce to a

minimum the error over all views.

e The current extrinsic parameters for each subsequent pose were computed from
the initial extrinsic parameters chained with the known relative movements of

the camera.

e The predicted positions of the chart in the image were determined by project-
ing the known world coordinates of the chart into the image with the current

extrinsic parameters and the overall intrinsic parameters.

e The re-projected error quoted is the mean of the distances between the re-
projected image points and those from the chart detection method. However,
the actual values used in the optimisation process are those projected onto the

sensor plane.
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To see the relationship between different calibration processes various re-projected
errors for pre-optimised estimates of the camera parameters (rotation and transla-
tion, RT) were computed and compared. There were three single RT estimates and

one multiple RT estimate, as follows:

Single-view/singleRT The preceding pose single-view data is chained with the
last camera movement. The aim is to establish how the data from one view

generalises to the next.

Multi-view/singleRT (Initial pose) The RT of the initial pose is obtained prior
to any optimisation. For each subsequent pose the starting point of optimisa-

tion for the camera parameters are be the same.

Multi-view/singleRT The RT of the initial pose is determined after optimisation
at the preceding pose. Essentially the optimisation performed from this esti-
mate is over the same variable space as the previous estimate but should be

closer to the optimum, and hence take less time to reach the solution.

All the experiments discussed so far have involved optimising ten parameters, the
four intrinsic and six extrinsic parameters. However, these all rely upon knowing the
camera movements. As an additional experiment we remove the relative constraints
between the poses and optimise the RT parameters at every pose, along with one set
of intrinsic parameters. In other words, 4 + 6n parameters, where n is the number

of poses.

Multi-view/multiRT The estimates for the RT at each pose are taken from the

first pose chained with the relative movements.

From the above estimates the optimisation process was carried out at each of the
50 poses. We now look at the results. The results of errors (in pixels), re-projected
just into the current view, from the three singleRT estimates of the camera param-
eters are shown in figure 8.6a. The circles indicate the errors when the estimate is
taken from the calibration of the preceding pose. The dashed line is the estimate
taken from the initial pose. Both show large and erratic errors in contrast to the
third (solid) line which represents the estimate from parameters optimised over all
previous views. This confirms our expectations that sets of parameters derived from
separately calibrated single views are inconsistent and supports the view that the

parameters are biased towards the data.
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Figure 8.6b shows the errors after optimisation for the multi-view/singleRT es-
timates from the initial pose calibration and that from the optimised values from
the previous pose. Both are virtually identical indicating a similar minimum was
found, however the processing time for the latter was generally shorter than for the
former, as shown in figure 8.6¢, indicating that the minimum was closer to the solu-
tion. The significance of this result is that the accumulated optimised values of the
camera parameters give a much better estimate when extrapolated into a new pose,
indicating that the parameters are getting closer and closer to their optimal values

with each additional pose.

Also shown in figure 8.6¢ are the processing times for the optimisation process for
the multi-view /multiRT estimate, which rapidly increases after about ten poses.
This type of estimate and optimisation may be useful in a situation where the camera
movements are not reliably known, such as with a hand-held camera. The processing
time increases rapidly because the number of parameters being optimised increases
making a minimum value much harder to find. It would be impractical to use this
method for on-line calibration, however depending upon the accuracy required it
may be sufficient to optimise over a small number of views, keeping the processing

times to a manageable level.

The results for the optimised values of the focal length for the multi-view /multiRT
in a single experiment over 50 poses are shown in figure 8.7a. Compare this with
the other values shown. Although more stable than the erratic single-view calibra-
tion data the best performance is delivered by the multi-view optimisation which is
constrained by known robot movements. The other graphs in figure 8.7 show simi-
lar results for the other intrinsic parameters. In all cases there is little consistency
across the values derived from single-view calibration from different poses, whereas

the multi-view values quickly converge and remain stable.

Figure 8.8 shows the plots of values for the intrinsic parameters for all the 30 exper-
iments with some statistics shown in table 8.2. It is clear that the values obtained
from the multi-view procedure are consistent, repeatable and show a low variation
over the two week period of the experiments. Compare the mean values and vari-
ation of the focal length in figure 8.8a and table 8.2 with those in figure 8.7a (for
the single-view) and table 8.1. The latter are unstable, non-repeatable and erratic

in comparison.

Figure 8.9 shows an example of the re-projected errors at the test poses, those not
used in the calibration process. There is little difference between the errors for the

inner and outer poses indicating that the intrinsic parameters found are suitable
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Figure 8.9: Re-projected error for test poses.

Intrinsic parameters

Parameter Mean o
Focal Length 20.26 0.07
Image Centre X | 257.53 | 1.46
Image Centre Y | 160.71 | 1.04
K 0.0002 | 0.0003

Table 8.2: Results of all intrinsic parameters

for any pose. By comparing the magnitude of the errors with those computed
from single-view calibration data for figure 8.6a generalised to new poses, it can
be seen that the errors obtained from the multi-view calibration are much lower.
Furthermore, these results are repeatable and of an acceptable size allowing us to
achieve our goal of model maintenance by a moving robot/camera system. We found
that we got almost identical results for subsequent experiments of the test poses with

each pose giving an error of similar magnitude each time.

The repeatability of the errors determined in the test poses can be seen from figure
8.10 which shows the average re-projected error for the two test grids for each of
the 30 experiments. Both grids show a low mean values though with the inner
grid about half a pixel greater than the outer grid. These results indicate that the
camera parameter values which have been determined by our multi-view calibration
procedure are close to the optimal values for the camera/grabber configuration used.

This is further supported by the fact that a low error is obtained on the poses which
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Figure 8.10: Re-projected error of multi-view calibration data applied to the two

test grids over all experiments.

were outside the original volume of experimental poses.

8.6 Summary

We have presented a series of experiments with the purpose of investigating, in-
depth, the characteristics and usefulness of the values of camera parameters deter-
mined in a number of scenarios involving calibration from single and multiple views

of the camera system.

There are two main conclusions concerning single-view calibration. First, although
a small error can be achieved for the same view the parameter values obtained do
not generalise to different views resulting in large errors, of scores or even hundreds
of pixels, depending upon the type of chart used. Second, the parameter values are
not repeatable over time. Subsequent experiments do not show consistent values
even to the extent that each time the grabber is switched on the mean values for

the intrinsic and extrinsic parameters are different.

Others have addressed the problem of calibration for a mobile camera or with multi-
ple images [34, 64, 93, 126]. However, the number of positions or images is generally
small and there has been little attempt to identify the intrinsic parameters that
would be applicable to any general pose of the camera. Puget and Skordas [93] pre-

sented five different methods of calibration at eight different poses of a robot arm.
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The poses were over a relatively small area and the experiments did not include
investigation of the intrinsic parameters over time or testing in poses not used in

the original optimisation.

We have presented an experimental procedure which reliably recovers consistent and
stable values for the intrinsic parameters of a camera. These values have been tested
on additional poses within a proposed working environment and achieved an image
error of approximately 2 pixels. The information derived from this procedure would
be ideal for use with a robot where the movements are known, to predict the image

position of 3D world objects from any pose.

Subsequent research by Fedor et al [35] has investigated the performance of the chart
detection process. One of the very useful aspects of their work was that they used
synthetic images for which the ground truth (the position of the chart elements)
was available, allowing them to determine the chart detection error as well as the re-
projected error. The experiments involved evaluating the performance of the chart
detector while controlling the distance and rotation angle of the chart with respect
to the camera as well as the focus of the lens system. The results of the experiments
allowed them to make significant improvements to the chart detection system as well
as concluding that the best results can be achieved by using the centres of gravity
of squares instead of the corners. We expect our multi-view calibration procedure

will perform even better after taking these factors into account.



Chapter 9

Model Maintenance

9.1 Introduction

Two issues are covered in this chapter, as preliminaries to the working active vision
system, which is the topic of the final chapter in this part of the thesis. One issue
concerns how the presence of a predicted object can be confirmed without matching
every model in the object database. The solution is to determine match threshold
values for the object in question [131]. The other issue is the maintenance of the
predicted position of objects [133] with respect to its actual position, in succeeding
frames taken from a moving camera. A couple of experiments are described which
show this process in action and demonstrate the crucial importance of the projective

transformation parameters obtained from our multi-view calibration procedure.

9.2 Match Thresholds

The technique we used for object recognition requires matching an outline of an
object with every model in the database, in order to find the lowest value which we
take as confirmation of the correct object. Two potential problems arise with this
procedure. First, the object in the scene may not actually be represented in the
database, but will still result in a lowest match value resulting in misidentification.
Second, in order to find the correct model it is always necessary to search the entire
database. Fortunately, we are able to take advantage of the fact that the match
has significance in itself and not just with respect to the complete database. Under
ideal circumstances the correct match value will be zero. However, due to noise and

extraneous image detail the actual value will never be zero, but will consistently be in
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a range close to zero. Therefore, instead of checking our object hypothesis against
the whole database, we need only check the target model. If the match value is
within the threshold the hypothesis is confirmed. This procedure also overcomes

the second problem of falsely accepting an unknown object.

9.3 Experiments and Results

9.3.1 Determination of Match Thresholds

The match threshold experiment was performed with a database of five objects, the
saucer, cup-and_saucer, milkjug, plate and sugar bowl. Each object was placed in
different positions in the field of view covering the whole of the tabletop scene. At
each point the values of the match between the observed object and every model in
the database were measured and recorded. The results are shown in figure 9.1,given
as the number of positions in which the goodness of fit (match value) falls within
a particular interval, for each of the five models. The solid line represents the
distribution of the match values for the correct model, whereas the dotted line is the
mixture histogram of match values with all the other models. From these results,
match thresholds for the saucer, cup_and_saucer, milk jug, plate and sugar bowl
were derived as 4.10, 2.35, 3.50, 4.60 and 4.00, respectively.

9.3.2 Position Prediction

Our hypothesis concerning the maintenance of models and calibration data is that
the data derived from the multi-view procedure will produce a small variation in the
predicted object positions from different poses, whereas the data from single-view
calibration will not generalise well to new views, resulting in a large variation of
predicted position. Having determined two sets of calibration data, from single and
multiple camera poses (chapter 8 and [132]), our next step was to determine the

effect of the parameters on the predicted position of a recognised object.

The robot/camera system was successively positioned at 3D grid points 200mm
apart, covering a 650x650x450 virtual 3D volume (barring the poses that were un-
reachable or violated the camera protection protocols). The direction of sight of the
camera was always oriented towards the same point on the tabletop. In the initial
position the object, a milk-jug, was recognised and its 3D position computed. At
each subsequent position, using the known camera movement from the robot control

system, the new image position of the object model was computed.
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Figure 9.1: Determination of match thresholds
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Generally there would be some error between the new model position and the new
edges. This discrepancy was resolved by optimising the x and y world position of
the object such that the error between the re-projected model and the edges in the
image was minimised. A typical example is shown in figure 9.2. The first image
indicates the initial re-projected error between the edges and the model (thick grey
lines). The subsequent images show the minimisation process in action with the
final image showing the ultimate match. With this process, a new world position of
the object is determined at each new pose of the camera. Ideally, if the projective

transformation is accurate, the computed position should be the same in each case.

0 0 0

Figure 9.2: The process of optimisation of the world object position as seen in the

image position of the re-projected model.

To test the above hypothesis we performed the experiment as described with both
sets of calibration data with the expectation that the more reliable the data the
more precise the predicted position. As the results indicate, our expectations were

confirmed.

The plot of the predicted object world positions at each pose of the camera is shown
in figure 9.3. The circles represent the diameter of the base of the object on the
tabletop seen in plan view with the cross indicating the centre. Figure 9.3a shows the

predicted positions derived from the experiment using single view calibration data
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and 9.3b that for multiple view data. It is clear that the predicted positions derived
from the multiple view calibration show a marked improvement over the single view,
with a close clustering of points. Table 9.1 shows the mean and standard deviations
of the distance of each point from the mean position of all the points, for both the

single and multi-view calibration.

(a) (b)

Figure 9.3: Plan view of predicted positions from single view calibration (a) and
from multiple view calibration. Each circle represents the base of the object, with
the centre shown by a cross. The area of each image covers 600x600mm and the

diameter of each circle is 100mm.

The predicted image positions derived from the single view calibration were, in fact,
so poor that the regions allocated for edge detection were so far from the actual edges
required that the position optimisation could not converge to the correct solution.
This was resolved by manually indicating (with the cursor) an initial image location

at which to start the position optimisation procedure.

A surprising outcome of this experiment is the finding that with the single view
calibration the estimated camera parameters give rise not only to a larger variance
in object position estimation but also to a bias. Thus the object pose cannot be
refined merely by viewing it from several viewpoints and averaging the position
estimates. However, the converse is true, provided the camera is calibrated using
the multiple view calibration procedure. Thus with appropriately calibrated camera,
an estimate of the position of an object can be refined by taking multiple views of
the same object and subsequently averaging the positional measurements before

inserting the object identity and its position into the scene model database.
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Predicted world position data

Parameter Single view calibration | Multiple view calibration
X 331.105 442.728
y 240.409 391.170
Mean distance 82.2 15.4
o 48.5 7.0

Table 9.1: Results of the predicted world position experiments. The mean x and y
coordinates (millimetres) of predicted world positions are shown first, followed by
the mean distance between the position predicted from each experiment to the mean

position along with the corresponding standard deviation.

9.3.3 Occlusion Experiment

A further experiment demonstrates the application of the improved knowledge of the
projective transformation by recovering from a situation where the detected object
is occluded. In figure 9.4 the left hand column shows three successive scenes of
the tabletop. The second shows objects occluding the target object from the first
image. The robot is then moved to a new pose where the target is not occluded
and an attempt is made to recover detection by utilising the predicted position from

ground plane knowledge and the robot movement.

The result of this experiment is also shown in figure 9.4. Each row shows a different
scene with the columns showing, from left to right, the grey-level image, the ex-
tracted edges and the edges with the region boundary and the superimposed model,

if an object is detected.

In the first scene the milk-jug is detected (and its 3D world position recorded) as
indicated by the thick grey outline in the right hand column, which matches the edges
seen in the centre column. In the second scene the target object is occluded and no
object is detected. In the final scene the camera is moved to a pose where the milk-
jug is no longer occluded. From the world position derived from the first scene, the
known robot movement and the precise knowledge of the projective transformation
the image position of the object in the new scene is accurately determined, leading

to successful matching of the re-projected model and the observed edges.

At present we only show how detection recovery is possible given a suitable new
non-occluded pose and not how the choice of that pose is made. We leave to the

next chapter determination of the camera viewpoint.
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A

Figure 9.4: Occlusion experiment. Each row shows a different scene from the robot.
In the first scene an object, a milk-jug, is recognised. In the second the milk-jug
is occluded and recognition fails. The robot is then moved to a new pose and the

object is recovered.

9.4 Summary

Two topics have been addressed in this chapter which which lay vital groundwork in
preparation for the active vision system presented in chapter 10. We have shown how
object match thresholds can be determined experimentally, allowing confirmation of

object hypotheses avoiding costly search through the database.

The other main topic addressed here is the influence of the camera calibration ac-
curacy and stability on object recognition and its 3D pose determination in the
context of active vision. Previous work in the area of scene interpretation and 3D
reconstruction has concentrated mainly on static poses with calibration determined
from a single view image of the scene. We have shown that precise maintenance of
3D position cannot be achieved in the absence of reliable projective transformation
parameters and that the required accuracy cannot be delivered by the single view
calibration approach. The technique of computing calibration data from multiple

views [132] was shown significantly to improve the predictions of object positions
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from different view points assumed by a mobile camera.

Also presented was an experiment showing the application of the ability to predict
object 3D position to the standard problem of occlusion. The system was able to

verify the initial interpretation after a target object was occluded.



Chapter 10

Visual System Control

10.1 Introduction

The previous few chapters described the goals and context of the VAP vision project
and how the current work fits into that framework. We have seen that in order to
utilise a mobile sensor for object position maintenance it is necessary to accurately

determine the camera parameters.

In this chapter we see the full benefits of robust multi-view calibration by introducing
a fully integrated vision system which is able to move between different views of a
large scene. In addition to integrating the diverse elements previously described we
introduce a further level of processing by modelling the temporal evolution of the

scene and its events.

The main focus of computer vision research has been concerned with the spatial
structure of the world. Evident examples include spatial image analysis for the
extraction of lines, textures and numerous other features. What has received little
attention [52, 74, 77, 110] has been the structuring of the world in the time domain.
The evolution of events at different times is highly consistent and is often guided
by habit (table settings) and surrounding constraints (traffic). Observations of such
scenes can give rise to a set of rules which describe the sequential ordering of events
over time. These rules can be captured in a language, a grammatical model. In
this chapter we make use of such models to control both the processing for database

matching as well as the for the positioning of the sensor.
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(a) Typical experimental scene with all objects present.
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(b) Overall plan view of a tabletop scene with object locations

plotted from 3D world position values.

Figure 10.1: Plan view and camera view of tabletop scene.

10.2 Breakfast Table Scenario

The experimental set-up we chose is that of the setting of a breakfast table. Two
reasons for the choice of this scenario is that it is easy to reproduce in the labo-
ratory and contains the type of objects easily recognised by our cylindrical object
recognition engine. However, the main reason is that the scenario has a high degree
of temporal structure which can be represented by a scene evolution model. Our
main aim is to show the principle of control by such models. The same principles
and methodology can be extended to different scenarios with different recognition

engines. Figure 10.1a shows the full experimental scene with the objects used for
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the setting of the breakfast table. The scene is divided up into three zones (figure
10.1b) which represent regions of interest of particular types of activity. The coordi-
nates of the boundaries of the zones have been manually pre-defined. When objects
are detected their world position is computed allowing assignment to the particular
zone. The zones on either side (3 and 4) are place setting zones, where a single place
setting, consisting of a plate, eggcup and cup and saucer are expected. The central
zone (2) is the area where common objects are placed, in this case a milkjug and
sugarbowl. For historical reasons zone 1 is the entire scene but is not explicitly used

in the system.

10.3 Scene Evolution

In the current context a scene evolution model is a formal description of the order
in which objects might appear in the scene. We assume that such a model is derived
from many observations of a real scene which may evolve in different ways on different
occasions. Therefore, the model incorporates probabilities for what the next object

may be.

The temporal structure of scene events can be described by grammatical rules. A
grammar describes a hierarchical structure of entities with high-level rules composed
of lower-level rules. The rules at the lowest level include termination entities. In
natural language those entities are actual words, the basic units of language. In
the context of scene evolution grammars [70] the termination entities are recognised
objects, indicating an actual event. For example, buying a beer is made up of the
events order beer, pour drink and pay money, and can be described (in Backus-Naur

Form) as follows,

<BUY_BEER>: : =<0ORDER>, <POUR>,<PAY>

with the pour rule consisting, roughly, of termination events (lower case),

<POUR>: :=place(glass) ,open(tap),close(tap)

Such a description of evolution must include the following characteristics [20]: It
should,

1. be based on observable features
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2. describe individual objects
3. encompass relations between objects

4. include composition of objects

Such sets of rules can be captured in a regular grammar Gj

G = (QaZapaqﬂan)

where

Q is the set of states, or steps in the interpretation.

> is the set of features that drive the interpretation. By nature these features must

be discrete.

P is the set of productions that describe the evolutions from one state to another,
given a particular feature is detected. (P C (Q X Y XQ)).

qo 1is the initial state which is the entry point for the interpretation procedure.

Q. is the set of terminal or marker states (Q,, C @), which indicate that the

interpretation of a ’phenomenon’ has been completed.

QQ represents the states of the observed scene at particular points in the scene inter-
pretation. The process is driven by the detection of features ) defining the current
state and, in turn, the production, or set of productions, to invoke. Associated with
the productions may also be action specifications allowing execution of specific ac-
tions at particular points as well as probabilities which indicate the priority of the

elements of a production set.

The grammatical model of the scene evolution of the breakfast table scenario, for a

single place setting and the general setting, is outlined as follows
<TABLE_SETTING>: :=<PLACE_SETTING>,<GENERAL_SETTING>
<PLACE_SETTING>: :=plate,<CUP_AND_SAUCER_SETTING>,eggcup

<PLACE_SETTING>: :=plate,eggcup,<CUP_AND_SAUCER_SETTING>
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<GENERAL_SETTING>: :=milkjug,sugarbowl

<GENERAL_SETTING>: :=sugarbowl ,milkjug

<CUP_AND_SAUCER_SETTING>: :=saucer,cup_and_saucer

<CUP_AND_SAUCER_SETTING>: :=cup_and_saucer

Figure 10.2 shows the state transition network for the above rules. Each circle (node)
represents a world state at various points throughout the evolution and the links
indicate what objects are expected along with their probabilities, in percentages. In
this case the first object expected for a place setting is always a plate. For example,
the setting for a cup and saucer can occur either as a compound object, with both

objects together, or with the saucer followed by the cup.

Start @ Plate

Figure 10.2: State transition network.

In the actual system we potentially allow an infinite number of place settings with
one general setting, though the number must be known prior to execution. In our

experiments we have two place settings.

In addition to the rules describing what is going to happen next we also have (sep-
arate) rules describing where the events are going to happen, in terms of zones. In
order to keep things simple, at this stage, we have a simple rule which basically
states that we pay attention to the place setting zones in clockwise order and the
general setting when all the place settings are complete. In practice (as we only have
two zones) this means alternating between the place setting zones. To avoid paying

all our attention to one zone while there is activity in another we put a limit on the
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amount of time spent viewing one zone. To add a touch of realism we also state that
activity is more likely to happen in the same zone in which the last event occurred
(unless the setting is complete). In our experiments it means that we spend 2/3 of

our time in one zone and 1/3 in the other.

10.4 Scene Description

Maintaining and updating the description of the objects which are present in the
scene as viewed by a static vision system is relatively straightforward. It is only
necessary to examine the latest frame to build the description, discarding all previous
descriptions. With an active vision system it is somewhat more complicated, as
objects may be present in the scene but not the current view. Therefore, it is
necessary to maintain a scene description which is independent of any particular
viewpoint of the sensor. In our case we have two descriptions, one for the current
view and one for the entire scene. Each time the sensor moves to a different view we
detect the objects present to build the current view description which is passed to
the scene description, which holds information about what objects are in each zone
along with their world coordinates. The first time a view is visited we record the
image of the empty view so that comparisons with subsequent frames give us the
chromatic differencing information and regions of interest. With each subsequent
visit, because we have the object positions noted in the global scene description
we are able to confirm their presence without going through the frame comparison

process.

The grammatical scene prediction model has been implemented in a software system
for defining production systems, the C Language Integrated Production System
(CLIPS). So that the CLIPS production rules of the scene evolution model have
access to the current state of the world, the scene description is maintained as a set

of CLIPS facts. For example, a fact about the presence of a plate in zone 3 is simply,

(Region (Num 8) (Zone 3) (Object plate))

which describes a region of interest with a globally unique identifier (Num), the zone

and object present.
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10.5 Experimental System Behaviour

Figures 10.3 to 10.13 show an example of the behaviour of our active vision system

incorporating the scene evolution modelling, at various stages through the process.

Each figure shows (clockwise from top left), the grey-level image of the current view,

the binary image of the comparison with the base image, the list of predictions and

probabilities for objects and zones, the plan view of the location objects and zones

and the image of object and model outlines with region boundaries and numbers.

The explanation of each figure is as follows,

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.3 The starting point of the program with zone 3 as the initial view, with
no objects present. The first objects expected in zones 3 and 4 are plates
(100% probability), though more likely in zone 3 (66%) than zone 4 (34%). If
nothing happens for a certain period of time the robot/camera system moves

to zone 4.

10.4 A plate has been placed in zone 3. The world position, according to
the computed coordinates is shown in the plan view. The binary image shows
the region in which there has been significant change from the base image.
The edge image shows the lines (white) extracted from the region of interest
superimposed with the matched model (red). Now the predictions show that

there are three objects which might appear next in the current view.

10.5 An eggcup is also placed in zone 3. Expected next is a cup and saucer

setting, which will be either the cup and saucer together or the saucer first.

10.6 The cup and saucer setting did not occur within the time limit in zone
3 so that system moves to look at zone 4. Although not present in the current
view the scene description maintains information about the plate and eggcup

in zone 3 (see plan view).
10.7 A plate is placed in zone 4.

10.8 The place setting for zone 4 is completed. As indicated by the list of

predictions no more events are expected in zone 4 (zone 3 probability is 100%).
10.9 A saucer is placed in zone 3 and the last object, the cup, is predicted.

10.10 The cup in zone 3 completes all place settings. We are now at the point

where activity is expected only in the central zone (zone 2).
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Fig. 10.11 The system moves to zone 2, waiting for either the milkjug (40%) or
the or the sugarbowl (60%). It should be remembered that the functional
purpose of the probabilities is to control the processing in relation to the
search through the database when matching models against image outlines.
There are 100 models in the database. Even though the object placed was
not the one with the highest probability it means that the milkjug model was

checked second, as opposed to its actual position in the database.
Fig. 10.12 The milkjug has been placed.

Fig. 10.13 The sugarbowl has been placed and the system reaches the end node

in the scene evolution model (see 10.2).

Clips Facts

Predictions

Object plate Zone 3 100
Object plate Zone 4 100
Zone 3 66

Zone 4 34

Position

Figure 10.3: The initial view at zone 3.
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Clips Facts
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Object eggcup Zone 3 20

Object cup_and_saucer Zone 3 30

Object saucer Zone 3 50

Object plate Zone 4 100

Zone 3 66
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Position
+
+
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Figure 10.4: The first object, the plate, is placed.

Clips Facts
Predictions
Object cup_and_saucer Zone 3 40
Object saucer Zone 3 60
Object plate Zone 4 100
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Zone 4 34
Position
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Figure 10.5: An eggcup joins the plate.
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Clips Facts

Predictions

Object cup_and_saucer Zone 3 40
Object saucer Zone 3 60

Object plate Zone 4 100

Zone 3 66

Zone 4 34

Position

Figure 10.6: Attention moves to zone 4.

Clips Facts

Predictions

Object cup_and_saucer Zone 3 40
Object saucer Zone 3 60

Object plate Zone 4 100

Zone 3 66

Zone 4 34

Position

Figure 10.7: A plate is placed.
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Object cup_and_saucer Zone 3 40
Object saucer Zone 3 60

Zone 3 100

Position

Figure 10.8: The zone 4 place setting is complete.
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Object cup_and_saucer Zone 3 100
Zone 3 100

Position

Figure 10.9: Attention returns to zone 3 where a saucer is placed.



134

Chapter 10. Visual System Control

Clips Facls

Predictions

Object milkjug Zone 2 40
Object sugarbowl Zone 2 60
Zone 2 100

Position

Figure 10.10: A cup is placed completing the zone 3 setting.
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Object milkjug Zone 2 40
Object sugarbowl Zone 2 60
Zone 2 100
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Figure 10.11: Attention moves to the last zone.
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Figure 10.12: The milkjug is placed.
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Figure 10.13: The sugarbowl is placed, completing the table setting
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10.6 Results and Summary

In order to evaluate the benefits of using scene evolution models we ran our system
with the predictive model previously described as well as with an unrestricted gram-
mar model, which allowed random ordering of the objects. The processing times for
the model matching were recorded for ten different routes through the two-place
setting state transition network (figure 10.2) of the predictive grammar, and twice

for the unrestricted grammar. The results are shown in table 10.1.

Model matching processing costs

Number | Mean matches | Mean time
A 62.45 1.503
B 62.45 1.500

| Mean | 6245 1.502
1 1.00 0.017
2 1.88 0.027
3 1.33 0.022
4 1.38 0.021
5 1.30 0.022
6 1.22 0.019
7 1.50 0.020
8 1.88 0.030
9 1.56 0.026
10 1.44 0.022

| Mean | 1.45 0.023

Table 10.1: Processing costs of model matching in a database of 100 objects. The
middle column shows the average number of models checked, followed by the time
in seconds, in the third column. A and B are from an unrestricted grammar and 1

to 10 from the predictive grammar shown in figure 10.2

With the unrestricted grammar model matching is performed by starting at the
beginning of the database, of 100 objects, and matching each one until a suitable
match is found. The processing is entirely dependent upon the order of models
within the database. In this case an average of 62 (1.5 seconds) models had to be
checked until the correct one was found. The result of the predictive grammar, on

the other hand, is to define the order in which we access the models in the database.
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Following the grammar results in significant improvements in the number of matches

required (1.45) and corresponding processing times (0.02 seconds).

It should be noted, however, that these results represent what is probably the best
case scenario, as all the objects placed in the experiments were legal with respect
to the grammar model. As yet we have not implemented procedures for handling
placement of objects which are in the database but not within the list of predictions.
Such an extension would add to the robustness and realism of the system and would

be a useful project for future work.

In this chapter we have described the function of scene evolution modelling along
with an active vision system which uses such models. The system also integrates
change detection, object detection, model matching and mobile camera control for
processing complex dynamic scenes in real-time. The above results show the obvious

benefits of modelling the temporal evolution of dynamic scenes.
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Chapter 11

Conclusions and Future Work

11.1 Introduction

In this thesis we have presented two aspects of a vision system. The rationale for
the PCT-based functionality is partly to model and emulate a naturalistic theory of
living systems. Currently this system is concerned with low-level visual and tracking
behaviours, but is a potential module of any general vision system. The VAP inspired
system is more application based and so is not concerned with biological plausibility.
Instead it attempts to solve high-level visual problems for the purposes of scene
interpretation. Although there are differences between the two methodologies there
is a common aim in both areas of research, of the desire to construct artificial visual
systems which are mobile, flexible, robust, autonomous and intelligent. We suggest
that for the next generation of sophisticated artificial systems both approaches are
necessary. The robustness is provided by the ability of the perceptual control systems
to counteract unpredictable disturbances and keep low-level systems working, and
the intelligence is provided by the high-level reasoning and interpretive abilities of

the VAP-type system which guides the overall operation.

In this chapter we conclude with a summary of each area and some recommendations
for future research. However, first we discuss a general point regarding the perspec-
tives which are taken when attempts are made to describe and simulate complex

systems, of which vision and visual behaviours are no exception.
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11.2 Perspectives

Any complex system, or associated behaviour, whether it be an animal system,
vision, language, problem solving or intelligence can be viewed from various per-
spectives. The usual research perspective which is taken is that of the observer.
The descriptions which are then made are in terms of observable phenomena. Sub-
sequent attempts to simulate these systems focus on these phenomena. We suggest
that this is not the right perspective to take as such simulations do not get to the
essence of the actual complex system, and as such will ultimately be limited in ex-
planation and functionality. Both areas of research presented suffer, to some extent,

from this malaise.

~ Cow I:|-|.-_‘_I
T, Mo T

Figure 11.1: The Game of Life. “On” cells are white.

As illustration of this issue consider the Game of Life [86]. Figure fig 11.1 shows the
state at one particular iteration of the Game of Life which is a dynamic, complex
system consisting of a grid of elements where each cell can be either “on” or “off”.

From one iteration to the next the state of each cell may or may not change.

From the perspective of the observer there is a great deal of complex behaviour
occurring. Many different kinds of patterns can be observed. Many rules can be
devised which describe the transitions of parts of the Game of Life world from one
state to the next. For example, a “blinker” (see figure 11.2) can be identified where

an area alternates between three vertical and three horizontal “on” cells. Also a
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(a) Blinker.

(b) Glider

Figure 11.2: Two examples of dynamic Game of Life patterns. “On” cells are black.

“glider” where an area of cells appears to move across the world. Many other
shapes and configurations “appear” in the Game of Life including, the block, barge,
aircraft carrier, spaceship, mango, canoe and pond [86]. From the perspective of
the observer, rules can be written which specifically generate each of these patterns.
If this observer-centric approach is taken the result will be an enormous amount of
rules of varying levels of complexity from the very simple to the extremely complex.
The Game of Life is actually implemented in a very different and extremely simple
way. There are only three rules for the next state of each cell, which depend upon

the states of the cell’s eight neighbours,

o if a cell has 2 “on” neighbours, its state remains the same

o if a cell has 3 “on” neighbours the next state is “on”

e if a cell has 0, 1, 4, 5, 6, 7, or 8 “on” neighbours the next state is “off.”
All of the patterns and transitions which can be observed in the Game of Life arise
from these three simple rules. None of the behaviours are specifically implemented

but emerge from the above rules. Here, then, lies the danger of taking the observers

perspective,



144 Chapter 11. Conclusions and Future Work

e observed patterns or behaviours are side-effects of the system’s operation

e simulations targeting specific emergent behaviours are unlikely to emulate the

fundamental operation of the system

e the rules devised may never be a complete set as there may be other patterns

not yet observed

To achieve a true simulation of any complex system the correct perspective to take
would be system-centric. The target of simulations, then, should be the fundamental

laws of operation themselves and not the emergent behaviour.

Next we summarise the two main parts of this thesis indicating to what extent the
systems described suffer from the problems outlined in this section and suggest some

recommendations for future research.

11.3 VAP

11.3.1 Summary and Results

In part IIT we presented a vision system for the purposes of high-level scene inter-
pretation. The system integrates diverse modules for image based change detection,
identification of regions of interest, shape outline detection, object recognition, scene
evolution modelling, hypothesis management and mobile robot position control. In
order to determine the 3D position of objects in the world it is necessary to first de-
termine the relationship between the sensor and the world coordinate system. This
process, camera calibration, is a major issue in computer vision. We investigated
this problem and showed that calibration parameters derived from a single-view do
not generalise well to other sensor viewpoints. To overcome this problem we de-
vised a multi-view calibration method which significantly reduced the errors in the

predicted position of objects from new views.

As well as the camera calibration problem and the technical difficulties involved in
integrating diverse modules the other main problems investigated were control of
database matching and of the sensor position. These two problems were addressed
by modelling the temporal evolution of the experimental scene. The scene evolution
models give predictions for what is going to happen and where it is going to happen,
in terms of object placement. This knowledge allows us both to move the sensor

to the required viewpoint as well as checking, in the object database, the predicted
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object against the actual object. Prioritising the database search in this way along
with experimentally determined match thresholds, avoids the requirement to search
the entire database for the closest match. Modelling observed patterns of behaviour
does, though, give rise to the problems alluded to in section 11.2. However, it is ac-
knowledged that until the fundamental laws of such behaviour have been established

the current approach is the only one which is practical.

The operation of the complete integrated system was described in chapter 10 and
results presented showed the savings in processing costs due to the scene evolution

modelling.

11.3.2 Future Work

Our recommendations for future work which extends this system are two-fold:

e we currently utilise one recognition engine for cylindrical objects. Others could

be easily added to extend the recognition capabilities of the system.

e although the principle of the benefits to processing costs was demonstrated
with the scene evolution model used we suggest, for the purposes of furthering
the sophistication of the scenarios with which the system is able to cope, that

the complexity of these models is increased.

e also a necessary part of a realistic system would be the ability to cope with
errors in interpretation of object identities. This would involve the capability

to backtrack through the evolution model to recover from invalid routes.

114 PCT

11.4.1 Summary and Results

In part IT we introduced a little known theory of perception and behaviour within
living systems, Perceptual Control Theory. In contrast to the conventional in-
put/output view of perceptual processing, PCT suggests that living systems are
made up of feedback control systems which control their perceptual inputs. All lev-
els of behaviour follows from this simple premise. Specific actions are not computed

by the system but are varied in order to maintain the input values. Observation and
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measurement of the outputs of the system as performed by the psychological com-
munity are not a useful clue to internal processing and may merely be an indication

of environmental disturbances.

Some simple simulations of basic perceptual control were presented. Among others
the crucial function of the control system counteracting disturbances to maintain its

input was demonstrated.

Leaving the theory behind we moved on to the elements required to construct a
working example of visual perceptual control, that of an object tracker. For the
purposes of computational efficiency as well as biological plausibility we used the
foveal representation of the scene. After segmenting the target object we were able
to extract a representation of the direction and magnitude of fixation which was
the perceptual input of the control system, in other words, the controlled variable.
Presented was a real-life control system in action. The system is able to easily and
rapidly fixate and track moving objects of a single colour. Segmentation of grey-level
or single-coloured objects was a relatively simple process. Our goal however, was to
extend the abilities of the system to track more complex objects. For this purpose we
introduced a method of encoding a target by a hierarchy of feature levels. The idea
being that the higher levels would more specifically represent features belonging only
to the target. The experiment for fixating multi-coloured faces showed that this was
the case and successful fixation was made even though there were many distracting

elements within the scene.

11.4.2 Future Work

The fixation experiments to the multi-column faces were performed on real but off-
line images. Future work would benefit from testing the system on live scenes fully
to test the robustness of the feature encoding and detection technique. Also rec-
ommended are different types of filtering techniques as well as introducing feature
dimensions other than colour, such as motion, edges and texture. The more differ-
ent kinds of dimensions involved the more discriminatory will be the segmentation

process.

The control system approach is system-centric, as recommended in section 11.2.
However, there is still a danger with manually designed control systems that the
controlled variables used are those as perceived from the observers viewpoint and
not those which actually emerge in real systems. We suggest, therefore, that the
most beneficial direction for future PCT research is to investigate learning and re-

organisation within perceptual control systems. This would ensure that the systems
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which develop do so because they are successful at control as well as removing the

design burden from the human researcher.
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