
CrowdLogic.pdf Threads from CSGnet 1

Logical and sub-logical analysis

Unedited posts from archives of CSG-L (see INTROCSG.NET):

Date: Thu Oct 14, 1993 9:19 am PST
Subject: Logical and sub-logical analysis

[From Bill Powers (931014.0910)] Avery (931014.1530)

> The control system responsible for direction of movement produces an

error signal proportional to the angle between the current direction of
locomotion (the direction the CROWD person is headed) and the direction
of the goal. But there could be another system that ascertains whether
motion in the current direction is blocked for the goal ...

In CROWD there is such a second system. However, it ascertains something much
simpler which has the same effect: whether something is too close. Instead of
analyzing the scene and reasoning about it, the person in CROWD simply avoids,
at all times, too much proximity to anything, divided into two classes: total
proximity in the left-forward region, and ditto in the right-forward region.
Too much proximity to the left results in a veer to the right, etc, the radius
of curvature automatically being inversely related to total proximity. As
designed, this system simply overpowers the destination-seeking system, but it
could have modified the destination-seeking system's reference angle to avoid
conflict.

In your diagram, a CROWD person would simply head toward the goal until it got
close to the wall, and then veer left or right to avoid collision. It would
move along the wall to an opening, and if the sides were far enough apart,
through the opening and on toward the goal. The effect is to pick an opening
that is reasonably close to the direction of travel. Not, of course, by the
shortest path. The person doesn't actually seek the opening; in effect it just
keeps moving until there is decrease in proximity in a direction toward the
destination, and that reduces the tendency to veer away from that direction.

In my original stab at the CROWD program, each person had a 360-degree map in
6-degree bins, with total proximity recorded in each bin. The idea was to scan
the map and look for minima in total proximity near the direction of the goal,
and set the position of that minimum as the immediate destination. When the
person got to that gap, another scan would take place and a new gap would be
sought. This would have resulted in more intelligent behavior in some
circumstances, but because what lay beyond any given gap was invisible, the
result wouldn't have been a lot better. And because there were other active
people on the field, a gap wouldn't necessarily stay put or continue to exist
while you were traveling toward it; in fact the scan would have to be redone
on every step, or at least very frequently, and a wrong guess about which gap
would remain open might result in a very unintelligent-looking path. Also, as
you can guess, by the time I had 10 or 15 active people, all making maps, the
program was simply CRAWLING along.

I soon saw that I was getting into a complicated logic-level model, and that I
still had to solve the collision-avoidance problem, so I looked for a simpler
way. The simpler way proved to be just to avoid collisions and forget about
the map. This method has all sorts of intelligent-looking effects that would
require very complicated searching and reasoning to accomplish by a brute-
force logical system -- for example, getting back out of a cul-de-sac, or
deciding that there are no gaps of a large enough size and turning away to go
completely around the crowd.

In fact the simpler program does many things that I never would have thought
to provide for at the logic level and that would have had to be added to make
the program actually work. Just think of the logical problems when one group
of five people heading toward one destination crosses the path of another
group of five heading toward a different destination, all in the midst of a
scattering of stationary obstacles!

CrowdLogic.pdf Threads from CSGnet 2

One of the most interesting things about CROWD is the way people rationalize
it after seeing it operate, but without knowing how it works. It's almost
certain that the "explanation" will be at too high a level. "Look," the
observer says, "he's trying to get out of that pocket, looking for the
opening." Of course he isn't; he doesn't even know he's in a pocket or that
there is an opening. All he knows is proximity to left and right, and the
direction and proximity of the destination.

Your proposed rule

 Direction D is blocked for goal G if, proceeding in D, you will arrive at

an obstacle, such that, when you then head toward D, the obstacle is
still in the way.

is probably an unnecessary complication, a rationalization of something that
can be done far more simply at a sub-rational level. While the rule can be
stated relatively briefly, getting the information needed to apply the logic
could be extremely complex. For example, to determine whether the direction of
travel will intersect an obstacle, you must project the direction of travel to
see whether the resulting line crosses the boundary of some outline; this
means testing every point along the line to see if its coordinates are the
same as some coordinate in the boundary of some object. Then you must change
the direction of the line infinitesimally and do the computation again, until
finally a direction is found where the distance to the intersection is
sufficiently large. This is the sort of burden of computation that results
from characterizing the problem as one of logic and just trying to compute
your way through it.

If you think in terms of analog perception, it's obvious that if you're going
to collide with an object, that object will be seen in the middle of the
perceptual field, where "straight ahead" always is. In CROWD I assumed some
kind of visual perception, with proximity being indicated roughly by the area
of each image, which I could compute as proportional to the inverse square of
the distance. I could then, knowing the position and orientation of the
person, and the positions of all obstacles, easily compute the proximity that
would be seen to left and right for all objects -- in effect, simulating the
environment and the visual equipment.

The result fits your proposed rule, but without applying any logical rule. And
the ensuing action doesn't require reasoning, either: you don't need to reason
that if you keep going in the same direction, you'll hit the obstacle, and
therefore you should institute a turn. You just hook up the perception to the
turning apparatus via a comparator.

I am always amused by "fuzzy logic" programs, which try to solve simple analog
problems by means of logic-type reasoning. If the inverted pendulum is medium-
left and moving left, apply maximum rightward force; if medium-left and moving
right, apply medium leftward force. And so forth for dozens of rules. Also,
grade the amount of each variable by some distribution around the exact
condition, in a "fuzzy" way. So you end up doing something with a high-speed
RISC processor that could be accomplished at a sub- rational level with one
operational amplifier and a couple of resistors and capacitors.

If you solve these problems at the lowest level possible, then when the time
comes to consider more complex aspects of the situation, all you need is to
decide which analog solution to bring into play. You don't need to carry it
out at the logic level: it's already been solved sub-logically. This means
that the logic actually required will be quite simple. Let the logic level
pick the destination (I'm hungry and it's 12:00, so pick the coordinates of
the hot-dog stand as a destination), and the analog systems will get you there
without bumping into anyone.

Best, Bill P.

