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Abstract

This paper is the start of a series of articles presenting a model of
human oculomotor control.What matters most in this first part is the
development of a basic model of the horizontal eye movement ap-
paratus based on PCT (perceptual control theory) by William T. Powers
[Powers, 1973] which allows to relate the mathematical description of
the model very close to the physiological and neurological reality. The
resulting model is used throughout the series as a basic component in
the simulation of all kinds of eye movement.
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1 Introduction

In the past two or three decades the horizontal eye movement system has
been studied in detail by many investigators. Essentially all this research
was based on phenomological models of eye movements with the same
basic structure: a mechanical model of opposing muscles attached to the
globe (see e.g. [Carpenter, 1977]).

In Figure 1 a model of this kind is shown.

Mechanical Model of Horizontal Oculomotor System

Figure 1

Here, each muscle of the horizontal pair of muscles is modelled as a
serial spring representing the elasticity of the muscle, cascaded with a par-
allel combination of a force generator a (nonlinear) viscous element and
a spring. The force generator and the dashpot element represents the con-
tractive part of the muscle. The arrangement of springs and dashpots varies
with the models.

The development was guided by the measurement of steady-state, macro-
scopic muscle properties, primarily in human strabismus patients ([Collins, 1975],
[Robinson et al., 1969]). These models can generate realistic position, veloc-
ity and developed tension for different kinds of eye movements (fixation,
pursuit and saccadic movement).

The dynamic properties of this kind of mechanical models can be ex-
pressed with a set of differential equations. For the medial rectus in the
model of Figure 1 the equations are obtained by analyzing the forces ap-
plied by the components of the mechanical circuitry:

The tension developed by the three elements in parallel is:

Ton(t) = Be (2 0 (6)) + Ko 2 (£) + Fin(0) (L1)

ot



The serial spring is prolongated by x + z,,, so the force developed is:

Tm(t) = K ($(t) + xm(t)) (1.2)

Putting both results for the tension together by equating both expressions
gives the differential equation for the medial rectus. The other parts of
the model are descibed in a similar way; the resulting three differential
equations are:
Medial Rectus:

B, (% Tm(t)) + Ke xm(t) + Fp(t) = K (2(t) + 20 (2)) (1.3)
Lateral Rectus:
B, (% z1(t)) + Koz (t) + Fi(t) = K (x(t) — z(t)) (1.4)
Elasticity and viscosity of orbit:
B, (% 2(®) + Ko 2(t) = (—22(8) — m(t) + 2m(®) Ky (L5)

This is a coupled system of first order DEQ’s, coupled by the deviation of
the eyeball z. This system can be solved numerically or analytically.

Solving the DEQ’s for the first derivatives of x,,, x; and x shows that
there is a control structure behind those equations. As an example the DEQ
1.1 for the medial rectus is transformed:

0
Tm(t) :Bc(axm(t)) +Kc$m(t) +Fm(t) (1.1)
gives:
Q) = - (Tou(t) ~ Ko wn(t) — Fua(t) (11)
ot Tm = B. m cTm m .
This equation describes an integrator with negative feedback of
T )

and an input of

or, in terms of control theory, a proportional element with delay or leaky inte-
grator. See Figure la.



The Integrating Device
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Figure la

The main question which arises now is:
Where comes the entity 7;,, from?

Assumed, that the entity of developed tension of the muscle is available,
the model described above works. Because of the nature of the model as a
phenomological one the origin of T,,, is’nt in the scope of interest.

Going over to a control theoretical model, intimated by the transforma-
tion of the DEQ which describes the medial rectus, it is assumed that all
physical entities involved in the control process are measurable or com-
putable by other measurable entities. This assumption is one of the basics
of perceptual control theory: the concept of the controlled variable.

The major task described in this paper is the finding of controlled vari-
ables in human oculomotor control and to refine the mechanical model in
Figure 1.

2 Basic Outlines of the PCT Model

In his Minireview on Proprioceptive Knowledge of Eye Position Martin J. Stein-
bach [Steinbach, 1987] gives a condensed overview of eye muscle proprio-
ception. Without any doubt there are muscle spindles [Lukas et al., 1994] to
perceive changes of lenghts of muscles and Golgi tendon organs [Eggers, 1982]
to perceive developed tension in the eye muscles of man.

By analogy with the limb-muscle receptors, the signals of these recep-
tors may serve as feedback signals used in the control of eye movement.
However, this possibility has commonly been discounted. Despite this fact



and in consideration of latest results of the investigations of Hayman, Du-
tia, Knox and Donaldson ([Hayman et al., 1993], [Knox and Donaldson, 1993])
the signals of both types of receptors will be used in modelling the human
horizontal eye movement system.

Moving the eye requires the combined action of at least two muscles:
an agonist which contracts and develops the force required to rotate the eye
in his socket and an antagonist which relaxes and gets longer. This is the
picture of reciprocal innervation of an opposing muscle pair.

In the following the opposing pair of muscles which drive the right eye
horizontally is regarded. These muscles are the right medial rectus (RMR)
pulling the eyeball towards the nose when active and the right lateral rec-
tus (RLR) which pulls the eyeball in opposite direction towards the right
temple.

To simplify modelling, this pair of muscles is arranged in a straight line
with the eyeball as a movable point just between them. This translatoric
movement is equivalent to rotation under the assumption that the eyeball
is a sphere.

Each muscle is treated as a two-component system, an elastic element
and a contractile element. The contractile element is the active element:
innervation leads to shorten the whole muscle.

The elasticity and all velocity dependent viscosities of the eyeball are
modeled by a passive damping element; this is in no way unusual in corre-
spondance to the model shown in Figure 1 and only describes the physical
properties of an eye muscle by means of a mechanical analogon. For a de-
tailed description of muscle models see [McMahon, 1984].

Taking into account the receptors for tension and length changes in the
muscle, the Golgi tendon organ and the muscle spindle, the first step is
done to get a PCT-model of oculomotor control. See Figure 1b

Proprioreceptive elements in eye muscle
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Both receptors report their result of measurement in form of neural sig-
nal, spike trains with a frequency of spikes proportional to the magnitude
of the measured entity. Those signals are called proprioceptive signals. See
[Powers, 1973], chapter 3 for a detailed description of neural signals. Here
and throughout the paper, proprioceptive signals are denoted by p with
appropriate subscripts to show the origin.

Innervating the muscle by a nervous signal «,,, (t) causes the the muscle
to contract, stretching the attached tendon and stimulating the Golgi cells,
sensory receptors clustered on and near the tendon. These receptive cells
deliver a neural signal proportional to the force developed by the muscle.

In real muscles the process of innervation is initiated by the motor neu-
ron which receives two input signals:

e acommand signal f,,(t) (excitatory), and

e a proprioceptive tendon feedback signal py,(¢) (inhibitory).

am(t) = fm(t) — prm(t) (2.1)

This equation describes the computation of an innervation signal out of
two proprioceptive signals. Since these signals represent forces,

Am(t) = Fy, (t) - Tm(t) (2.2)

describes the comparative function for the forces. Figure 1c shows the sig-
nal paths.

Tension control in the medial rectus
(negative tension feedback loop)
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Figure 1c

The shortening of the muscle fibers z,,(t) as the primary process hap-
pening in the contractile element generates a force proportional to o, (¢);
the viscosities are modeled by a dashpot element. Dashpot elements de-
velop zero force when they are stationary, but resist lenght changes with
aforce F = B % z(t). B may be either a constant or a function of % z(t).
Here and throughout the different viscosities in the muscles and the damp-
ing of the eyeball are assumed to be constant.

The parallel elastic component K, is used to model the connective tissue
surrounding the muscle fibers.

So the force generated by the contractile element and the parallel elastic
element becomes:

Ant) = Koo (1) + Be o (1) (2.3)
and
0
5 Tm(t) = (A (t) — Koz (t))/Be (2.4)

The force acting on the load point is determind by the position of the load
point and by the amount of contraction of the contractile element. The
lenght difference is (in the coordinate system used in Figure 1c) is

Axgy = xm(t) + $(t) (2.5)

The force applied to the load point, in other words, the tension developed
by the muscle is:

Tm(t) = KsAzsm (26)



The right hand side of equation 2.5 is the equivalent to the measured ten-
sion in a real muscle. This expression is only needed to perform a math-
ematical model - in nature this value for T,,(¢) is measured by the Golgi
tendon organ. So we don’t need the lenght of the muscle z(¢) measured to
make the tension control loop work.

The equations 2.2, 2.4, 2.5 and 2.6 describe the closed loop for the tension
control in the medial rectus. The only input to the loop is the required ten-
sion F,,,(t), the reference value for the tension. The corresponding equations
for the lateral rectus are:

A4(t) = Fit) — Tu(t) (22)
Azy = m(t) - (t) 25)
Ti(t) = K, Ay 26)

The tension developed by both of the muscles act on the eyeball as oppos-
ing forces. The resulting force:

T,=T—-T, 2.7)

has to move the eyeball against the resistance of certain elasticities and vis-
cosities; the final equation describing the movement of the eyeball depen-
dent from resulting force T, is:

0 Ty — K, x(t)

o (1) 5 (28)

Now, the description of the horizontal eye movement system is complete.
It's a good practice in control theory to represent complex mathematical
descriptions as diagrams of interconnected functional blocks. Inspection of
the equations for both of the muscles and the eyeball shows that we need
three types of blocks:

e summing points (as in equation 2.2, 2.5, 2.7)
e (35 proportional function blocks P-blocks (as in equation 2.6)
e (G1,G3: leaky integrator blocks PT;-blocks (as in equation 2.4, 2.8)

The resulting diagram is shown in Figure 2.
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Block diagram of horizontal eye movement model

G Gy Tm

Figure 2

3 Simulating the system

There are many ways to simulate the system developed throughout the
previous section on a computer. The easiest way is to use a program which
offers the ability to solve mathematically the complete set of equations with
respect to dedicated variables. Another type of programs allows to con-
struct a block diagram like Figure 2 which is simulated when finished.
Programming the simulation in some programming language or other is
the hardest way and should be avoided. At the time, the author uses the
symbolic algebra system Maple [Redfern, 1996] to get analytical closed form
solutions. Future work will be done with Scicos [R. Nikoukhah, 1998].

To simulate the system all parameter values are needed. For a model
like the one described in Figure 1, [Collins et al., 1975] has determind the
spring constants for the parallel and the serial spring by implanting a little
force detector into the eye muscle. The resulting values are used rescaled.
Since Collins in all his models used a nonlinear (i.e. velocity dependent)
viscosity in the contractile element, this parameter was estimated by re-
gression, comparing simulation results with published data on developed
tension with respect to different positions of the eyeball. The assumption of
a dashpot element with linear chracteristic holds for the operational region
of the muscle [Enderle et al., 1991].

The parameters used in the simulations are:

1



K. = 6132 [N/m)]
K, = 12770 [N/m)]
K, 2554  [N/m)]
B. 2.00 [N s/m)]
K, = 3.07 [N s/m]

In control theory the behavior of control systems is tested with standard-
ized reference functions, for example with a step to ”1” performed at time
t1. S0, as a first test of the system, F,,,(¢) is set constant zero, F;(t) is the step
function just mentioned with ¢, setto 0.1 [s]. A jump to 1.0 for F;(t) at time
t = t; means, that the lateral rectus should suddenly develop the required
force of 1.0 [V]. The initial values for the simulation are:

z(0) = 0.00 [m]
zm(0) = 0.00 [m]
z;(0) = 0.00 [m]

The resulting movement of the eyeball in [mm] is shown in Figure 3.
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4 Conclusions

The simple simulation of eye movement at the end of the previous section
only shows that the system works in any way. The next article in this series

12



will go more into the details of this result determining the length-tension
characteristics of the muscles in fixation experiments: the simple motor

control system will be extended by a position control system, which also
allows to perform saccades.
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